Synthesis of 9-amino- and 9-sulfanyl-substituted benzo[b]quinolizinium derivatives

Anton Granzhan*† and Heiko Ihmels

University of Siegen, Organic Chemistry II, Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
E-mail: granzhan@chemie.uni-siegen.de

This paper is dedicated to Professor Waldemar Adam on the occasion of his 70th birthday

Abstract
Eight substituted N-aryl-9-aminoacridizinium and four N,N-dialkyl-9-aminoacridizinium derivatives have been prepared in moderate yields by the reaction of 9-bromo- or 9-fluoroacridizinium salts with selected amines. In contrast, the reaction with primary alkylamines gives only traces of the substitution product. The reaction of 9-fluoroacridizinium bromide with thiophenol yields 9-(phenylsulfanyl)acridizinium salt. The 9-(methylsulfanyl)-acridizinium salt was prepared by the cyclodehydration of the pyridinium precursor.

Keywords: Nitrogen heterocycles, quinolizinium, acridizinium, amination

Introduction

Benzo-annelated quinolizinium salts represent a class of nitrogen heterocycles with a bridgehead quaternary nitrogen atom, which attract much interest in view of their DNA-binding and DNA-photodamaging properties.1 Although several routes for the synthesis of benzo[b]quinolizinium derivatives, commonly referred to as acridizinium derivatives, are known,2,3,4 most substituents need to be introduced before the formation of the benzoquinolizinium core. Remarkably, only few amino-substituted benzo[b]quinolizinium derivatives are known.5 Recently, the 9-amino-acridizinium (1a) was synthesized and its photophysical properties as well as interaction with DNA were investigated in detail.6,7

†Present address: Laboratoire de Chimie des Interactions Moléculaires, Collège de France, 11 pl. Marcelin Berthelot, 75231 Paris Cédex 05, France
As a part of a project aimed at the development of a novel class of DNA-binding and DNA-photodamaging intercalators based on the acridizinium core, we were interested in the preparation of a wide range of substituted 9-aminoacridizinium derivatives starting from a common and readily available acridizinium precursor. While amination reactions of bromo- and chloro-substituted quinolizinium cations have been described in the literature several decades ago,8,9 this reaction was shown to deliver substantial amounts of the by-products resulting from the ring-opening and has limited synthetic applicability. Moreover, such amination reactions were unprecedented in the acridizinium system. Our recent studies showed, however, that 9-bromoacridizinium bromide reacts with substituted anilines to give the N-aryl-9-aminoacridizinium derivatives 1b.10

In view of the interesting properties of the N-aryl-9-aminoacridizinium derivatives, namely, their pronounced fluorescence enhancement upon interaction with double-stranded DNA10, we wanted to extend the series of substituted aminoacridizinium salts. In this paper we present our investigations of the amination of 9-halogenoacridizinium salts, aimed at the determination of the scope and limitations of this reaction. Beyond the N-aryl derivatives with various substituents in the aryl group, we have undertaken the synthesis of N-alkyl- or N,N-dialkyl-substituted derivatives of 1a, which may serve as reference compounds for the investigation of the effects of the aryl substituent. Moreover, we have prepared sulfur analogues of 1a, in which the amino group is replaced with a methyl- or phenylsulfanyl substituent. It is proposed that such derivatives could represent a complementary donor–acceptor system, as the sulfanyl group has different electron-donating properties than the amino substituent in the parent system 1a.

Results and Discussion

Synthesis of 9-aminoacridizinium derivatives and 9-(phenylthio)acridizinium. Similar to the nucleophilic substitution reactions of halogen- and alkoxy-substituted quinolinium11,12 and quinolizinium salts, the N-substituted 9-aminoacridizinium derivatives 3a–ℓ were synthesized by the reaction of the readily available 9-bromo- or 9-fluoroacridizinium bromides (2a–b)13 with selected amines (Scheme 1; Table 1). Similarly, the 9-(phenylsulfanyl)acridizinium (3m) was obtained by the reaction of 2b with thiophenol in the presence of a mild base (N-methylmorpholine, NMM).
Scheme 1. Synthesis of 9-donor-substituted acridinium derivatives from 9-halogenacridizinium salts. For the experimental details see Table 1.

Table 1. Reaction conditions and yields for the synthesis of acridinium derivatives 3a–o

<table>
<thead>
<tr>
<th>Compound</th>
<th>R¹</th>
<th>R²</th>
<th>Reaction conditions</th>
<th>Yield / %</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>–</td>
<td>–</td>
<td>(CH₂)₂O(CH₂)₂</td>
<td>2a</td>
</tr>
<tr>
<td>3b</td>
<td>–</td>
<td>–</td>
<td>(CH₂)₄</td>
<td>2a</td>
</tr>
<tr>
<td>3c</td>
<td>C₄H₁₀</td>
<td>C₄H₁₀</td>
<td>2b</td>
<td>EtOH</td>
</tr>
<tr>
<td>3d</td>
<td>CH₂CH₂OH</td>
<td>CH₃</td>
<td>2a</td>
<td>i-PrOH</td>
</tr>
<tr>
<td>3e</td>
<td>CH(CH₃)₂</td>
<td>H</td>
<td>2b</td>
<td>EtOH</td>
</tr>
<tr>
<td>3f</td>
<td>(CH₂)₂CH₃</td>
<td>H</td>
<td>2b</td>
<td>EtOH</td>
</tr>
<tr>
<td>3g</td>
<td>4-C₆H₄NMe₂</td>
<td>H</td>
<td>2a</td>
<td>EtOH</td>
</tr>
<tr>
<td>3h</td>
<td>4-C₆H₄OMe</td>
<td>H</td>
<td>2a</td>
<td>i-PrOH</td>
</tr>
<tr>
<td>3i</td>
<td>4-C₆H₄Me</td>
<td>H</td>
<td>2a</td>
<td>none</td>
</tr>
<tr>
<td>3j</td>
<td>C₆H₅</td>
<td>H</td>
<td>2a</td>
<td>none</td>
</tr>
<tr>
<td>3k</td>
<td>4-C₆H₄F</td>
<td>H</td>
<td>2a</td>
<td>none</td>
</tr>
<tr>
<td>3l</td>
<td>4-C₆H₄Br</td>
<td>H</td>
<td>2a</td>
<td>none</td>
</tr>
<tr>
<td>3m</td>
<td>4-C₆H₄Cl</td>
<td>H</td>
<td>2a</td>
<td>none</td>
</tr>
<tr>
<td>3n</td>
<td>3-C₆H₄Cl</td>
<td>H</td>
<td>2a</td>
<td>none</td>
</tr>
<tr>
<td>3o</td>
<td>2b</td>
<td>EtOH</td>
<td>1</td>
<td>reflux</td>
</tr>
</tbody>
</table>

a-c Isolated and characterized as: a tetafluoroborate; b hexafluorophosphate; c bromide salts. d Fully characterized as an O-acetyl derivative (3p).

The reaction proceeds in refluxing 2-propanol or ethanol in modest to good yields with secondary aliphatic amines, to give the compounds 3a–d. However, the reactions with selected primary aliphatic amines (isopropylamine, butylamine) gave mostly mixtures of unidentified products, which presumably correspond to the products resulting from the destruction of the
acridizinium core by the nucleophilic addition of amine to position 6, followed by further reactions of the resulting intermediates.14,15 Only traces of the substitution products (3e–f) could be isolated by column chromatography and conversion of the isolated bromides into the corresponding tetrafluoroborates or hexafluorophosphates.

In the case of donor-substituted anilines, the substitution products 3g–h could be obtained, albeit in low yields (< 20%), when the reaction was performed in refluxing 2-propanol or ethanol. In the cases of aniline, toluidine, or halogen-substituted anilines, the formation of the products 3i–n required considerably higher temperatures (120–150 °C). The latter reactions were performed in the absence of the solvent, but in the presence of a Lewis-acid catalyst (BF\textsubscript{3} × Et\textsubscript{2}O). The presence of other catalysts such as Lewis acids (SnCl\textsubscript{4}), Brønsted acids (hydrochloride of the corresponding amine, pyridine hydrochloride) or auxiliary bases, such as DBU or pyridine, did not improve the yield of the desired products. The arylamino-substituted derivatives 3g–n were isolated as bromides by several subsequent crystallization steps. Unfortunately, attempts to obtain substitution products with several electron-poor aromatic amines, such as 4-aminobenzonitrile, 4-(trifluoromethyl)aniline and 3-aminopyridine, were unsuccessful even at harsh conditions (180–200 °C). The structures of the acridizinium derivatives 3a–p were confirmed by 1H- and 13C NMR spectroscopy, mass-spectrometric and elemental analysis data.

Synthesis of 9-(Methylsulfonyl)acridizinium. The synthesis of 9-(methylsulfonyl)acridizinium salt 7 followed the general approach for the preparation of substituted acridizinium salts by the cyclodehydration of pyridinium precursors (Scheme 2).2,6 Thus, 4-(methylsulfonyl)benzyl bromide (4b) was prepared from the commercially available 4-(methylsulfonyl)benzyl alcohol (4a) following the published procedure16 and allowed to react with (1,3-dioxolan-2-yl)pyridine (5),17 to give the quaternary salt 6 almost quantitatively. The cyclodehydration of the salt 6 in PPA, which is most widely used as a cyclization medium in such reactions,2 gave only a moderate yield of the desired product (42%); however, the use of methanesulfonic acid led to an increase of the yield on this stage up to 81%. The 9-(methylsulfonyl)acridizinium 7, isolated as a tetrafluoroborate, was prepared in 78% overall yield based on the alcohol 4a; its structure is supported by the spectroscopic and elemental analysis data.
Scheme 2. Synthesis of 9-(methylsulfanyl)acridizinium tetrafluoroborate (7). Reagents and conditions: (i) HBr, toluene, 90 °C, 1 h, 98%; (ii) DMSO, rt, 7 days, 98%; (iii) MeSO₃H, 90 °C, 2 h; (iv) aq. NaBF₄, 81%.

Electron-donor properties of the substituents evaluated by NMR spectroscopy. Due to the strong electron-accepting properties of the quaternary nitrogen atom, 9-substituted acridizinium salts represent a donor–acceptor system which may be useful for the evaluation of the relative electron-donating properties of the substituents in position 9. Numerous studies have been performed aimed at the derivation of the substituent constants from the values of ¹H and ¹³C chemical shifts of substituted benzenes. ¹⁸,¹⁹ Along these lines we observed a good correlation ($r^2 = 0.984$) of the chemical shifts of the 6-H proton atom with the Hammett–Brown constants of the substituents, for which the σ_p^+ were known (Figure 1). ²⁰ The correlations of the chemical shifts of other nuclei, such as C9 or C11, were less satisfying.

The correlation may be used for the estimation of the electron-donor properties of the amino substituents, for which the corresponding σ_p^+ values have not been determined, so far. Indeed, the relative electron-donor strength of the arylamino substituents obtained from our data (Figure 1) is agreeable with the expected, considering the values of the Hammett constants of the substituent in the aryl ring. However, it should be noted that the values only reflect a trend and should be considered with caution, since the number of the points used for the regression analysis is too small to establish a firm relationship.
Summary

It was shown that the nucleophilic substitution of the halogen atom in 9-bromo- and 9-fluoro-acridizinium salts with amino and sulfur nucleophiles proceeds in low to moderate yields and has practical importance for the synthesis of 9-amino and 9-sulfanyl-substituted acridizinium salts. In general, the reaction with the fluoroacridizinium salt provides better yields of the substitution products, as compared to the bromo-substituted precursor. This observation is in line with the findings that the related fluoro-substituted quinolinium salts easily undergo nucleophilic substitution reaction with amines, and indicates that the key reaction step is the addition of the amino nucleophile to the halogen-substituted position of the acridizinium cation.

A series of such substitution products has been described. The major drawback of the proposed reaction is the difficulty of the isolation and purification of the products. However, the low yields of the substitution products are to some extent compensated by the easy availability of the starting compounds, namely 9-halogenoacridizinium salts. The present amination reaction is limited to the dialkylamines and relatively reactive anilines, since in the case of primary alkylamines only poor yields of the substitution products were obtained and the reaction with acceptor-substituted anilines did not take place. The studies of the photophysical properties of...
9-amino and 9-sulfanyl-substituted acridizinium salts, aimed at the establishment of these compounds as a platform for fluorescent probes, are currently underway.

Experimental Section

General Procedures.

All commercially available chemicals were reagent grade and used without further purification. The melting points are uncorrected. Mass-spectra (ESI in the positive-ion mode) were measured at a source voltage 6 kV; only m/z values in the range of 100–2000 units were analyzed. If not stated otherwise, the NMR spectra were measured in DMSO-d$_6$ using TMS as internal standard for 1H- and 13C NMR spectroscopy and hexafluorobenzene ($\delta_F = -162.8$ ppm) as external standard for 19F-NMR spectroscopy. The working frequency was 400, 100 and 376 MHz for 1H, 13C and 19F NMR, correspondingly. Unambiguous proton NMR assignments were established by means of $\{^1$H, 1H$\}$-COSY experiments. Elemental microanalyses of all new compounds were performed with a HEKAtech EuroEA combustion analyzer by Mr. H. Bodenstedt (Institut für Organische Chemie, Universität Siegen). TLC of acridizinium derivatives was performed on silica gel sheets (Macherey-Nagel Polygram Sil G/UV254), eluent: CHCl$_3$–MeOH–AcOH 80:20:1 v/v. 9-Bromo- and 9-fluoroacridizinium bromides were prepared according to the published procedures.13

9-(Diethylamino)acridizinium tetrafluoroborate (3c BF$_4^-$). General procedure for reaction with dialkylamines

A solution of 9-fluoroacridizinium bromide (2b, 0.834 g, 3.00 mmol) in EtOH (5 mL) was brought to reflux, and diethylamine (0.461 g, 6.30 mmol) was added. The reaction mixture was heated under reflux for 1 h (monitoring by TLC). After cooling to room temperature, the reaction mixture was evaporated to dryness and the product was isolated by column chromatography (alumina neutral, activity grade I; eluent CHCl$_3$–MeOH, 90:10 v/v). The green-fluorescing fraction was collected. The eluate was evaporated, and the corresponding tetrafluoroborates or hexafluorophosphates were prepared by addition of aqueous HBF$_4$ (50%) or concentrated aqueous NaPF$_6$ solution to the solution of the isolated product in minimal amount of water, followed by recrystallization of the precipitate from MeCN–AcOEt. The product (0.72 g, 71%) was obtained as orange prisms, mp 197–198 °C; $R_f = 0.58; ~^1$H NMR δ 1.24 (t, 3J = 7 Hz, 6 H, CH$_3$), 3.65 (q, 3J = 7 Hz, 4 H, CH$_2$), 7.06 (d, 4J = 2 Hz, 1 H, 10-H), 7.43 (t, 3J = 7 Hz, 1 H, 3-H), 7.64–7.68 (m, 1 H, 2-H), 7.71 (dd, 3J = 10 Hz, 4J = 2 Hz, 1 H, 8-H), 8.04 (d, 3J = 9 Hz, 1 H, 1-H), 8.18 (d, 3J = 10 Hz, 1 H, 7-H), 8.30 (s, 1 H, 11-H), 8.75 (d, 3J = 7 Hz, 1 H, 4-H), 9.74 (s, 1 H, 6-H); 13C NMR δ 12.4 (CH$_3$), 44.6 (CH$_2$), 99.1 (CH), 117.1 (CH), 118.2 (CH), 119.2 (C$_q$), 122.0 (CH), 125.4 (CH), 129.4 (CH), 130.2 (CH), 133.4 (CH), 137.2 (C$_q$), 138.0 (CH + C$_q$), 151.4
(Cq); MS (ESI\(^{+}\)) m/z (%) = 251 (100) [M]\(^{+}\); anal. calcld (%) for C\(_{17}\)H\(_{19}\)BF\(_{4}\)N\(_{2}\) (338.2): C 60.38, H 5.66, N 8.28; found: C 60.53, H 5.85, N 8.20.

9-(Morpholin-4-yl)acridinium bromide (3a BF\(_{4}\)^{−}). Yield 24%, orange prisms; R\(_{f}\) = 0.45; m.p. 256–260 °C; \(^{1}\)H NMR \(\delta\) 3.64 (m, 4 H, CH\(_{2}\)N), 3.81 (m, 4 H, CH\(_{2}\)O), 7.35 (d, \(^{3}\)J = 2 Hz, 1 H, 10-H), 7.55 (t, \(^{3}\)J = 7 Hz, 1 H, 3-H), 7.76 (dd, \(^{3}\)J = 9 Hz, \(^{3}\)J = 7 Hz, 1 H, 2-H), 7.93 (dd, \(^{3}\)J = 10 Hz, \(^{3}\)J = 2 Hz, 1 H, 8-H). 8.20 (d, \(^{3}\)J = 9 Hz, 1 H, 1-H), 8.25 (d, \(^{3}\)J = 10 Hz, 1 H, 7-H), 8.45 (s, 1 H, 11-H), 8.88 (d, \(^{3}\)J = 7 Hz, 1 H, 4-H), 9.88 (s, 1 H, 6-H); \(^{13}\)C NMR \(\delta\) 46.5 (CH\(_{2}\)), 65.6 (CH\(_{2}\)), 101.8 (CH), 118.5 (CH), 129.8 (CH). 133.5 (Cq), 137.4 (Cq), 137.8 (Cq), 138.3 (CH), 153.5 (Cq); MS (ESI\(^{+}\)) m/z (%) = 265 (100) [M]\(^{+}\); anal. calcld (%) for C\(_{17}\)H\(_{17}\)BF\(_{4}\)N\(_{2}\)O \(\times\) \(\frac{1}{2}\) H\(_{2}\)O (361.2): C 56.54, H 5.02, N 7.76; found: C 56.56, H 4.76, N 7.70.

9-(Pyrrolidin-1-yl)acridinium bromide (3b BF\(_{4}\)^{−}). Yield 30%, orange needles; R\(_{f}\) = 0.57; m.p. 248–250 °C; \(^{1}\)H NMR \(\delta\) 2.06 (m, 4 H, CH\(_{2}\)CH\(_{2}\)), 3.54 (br m, 4 H, NCH\(_{2}\)), 6.81 (d, \(^{3}\)J = 2 Hz, 1 H, 10-H), 7.42 (t, \(^{3}\)J = 7 Hz, 1 H, 3-H), 7.54 (dd, \(^{3}\)J = 9 Hz, \(^{3}\)J = 7 Hz, 1 H, 8-H), 7.65 (dd, \(^{3}\)J = 9 Hz, \(^{3}\)J = 7 Hz, 1 H, 2-H), 8.04 (d, \(^{3}\)J = 9 Hz, 1 H, 1-H), 8.15 (d, \(^{3}\)J = 9 Hz, 1 H, 7-H), 8.26 (s, 1 H, 11-H), 8.81 (d, \(^{3}\)J = 7 Hz, 1 H, 4-H), 9.85 (s, 1 H, 6-H); \(^{13}\)C NMR \(\delta\) 24.8 (CH\(_{2}\)), 48.0 (CH\(_{2}\)), 99.4 (CH), 116.8 (CH), 118.1 (CH), 119.7 (Cq), 122.9 (CH), 125.3 (CH), 129.3 (CH), 129.9 (CH), 133.3 (CH), 137.1 (Cq), 137.6 (Cq), 138.2 (CH), 150.6 (Cq); MS (ESI\(^{+}\)) m/z (%) = 249 (100) [M]\(^{+}\); anal. calcld (%) for C\(_{17}\)H\(_{17}\)BF\(_{4}\)N\(_{2}\) (329.2): C 60.74, H 5.10, N 8.33; found: C 60.40, H 5.08, N 8.26.

9-[(2-Hydroxyethyl)methylamino]acridinium hexafluorophosphate (3d PF\(_{6}\)^{−}). Yield 16%, orange amorphous solid; R\(_{f}\) = 0.37; m.p. 132–134 (shrinks at 80) °C (methyl ethyl ketone); \(^{1}\)H NMR \(\delta\) 3.24 (s, 3 H, NCH\(_{3}\)), 3.69 (m, 2 H, CH\(_{2}\)), 3.75 (m, 2 H, CH\(_{2}\)), 4.91 (br s, 1 H, OH), 7.06 (d, \(^{3}\)J = 2 Hz, 1 H, 10-H), 7.45 (dt, \(^{3}\)J = 7 Hz, \(^{3}\)J = 4 Hz, 1 H, 1-H), 7.54 (dd, \(^{3}\)J = 2 Hz, \(^{3}\)J = 9 Hz, 1 H, 3-H), 7.68 (dd, \(^{3}\)J = 9 Hz, \(^{3}\)J = 7 Hz, 1 H, 8-H), 7.79 (dd, \(^{3}\)J = 10 Hz, \(^{3}\)J = 2 Hz, 1 H, 1-H), 8.04 (d, \(^{3}\)J = 9 Hz, 1 H, 1-H), 8.15 (d, \(^{3}\)J = 9 Hz, 1 H, 7-H), 8.33 (s, 1 H, 11-H), 8.79 (d, \(^{3}\)J = 7 Hz, 1 H, 4-H), 9.79 (s, 1 H, 6-H); \(^{13}\)C NMR \(\delta\) 39.2 (CH\(_{3}\)), 54.0 (CH\(_{2}\)), 58.5 (CH\(_{2}\)), 99.6 (CH), 117.2 (CH), 118.1 (CH), 119.7 (Cq), 122.9 (CH), 125.3 (CH), 129.3 (CH), 129.9 (CH), 133.3 (CH), 137.1 (Cq), 137.6 (Cq), 138.2 (CH), 150.6 (Cq); MS (ESI\(^{+}\)) m/z (%) = 253 (100) [M]\(^{+}\); satisfactory elemental analysis could not be obtained due to HF elimination upon drying in vacuo.

9-(Isopropylamino)acridinium hexafluorophosphate (3e PF\(_{6}\)^{−}). Yield 4%, dark-yellow needles; m.p. 210–213 °C (MeOH–AcOEt); \(^{1}\)H NMR \(\delta\) 1.28 (d, \(^{3}\)J = 6 Hz, 6 H, CH\(_{3}\)), 3.87 (sept, \(^{3}\)J = 6 Hz, 1 H, CHMe\(_{2}\)), 6.88 (d, \(^{3}\)J = 1 Hz, 1 H, 10-H), 7.41–7.44 (m, 2 H, 3-H, 8-H), 7.68 (dd, \(^{3}\)J = 7 Hz, \(^{3}\)J = 8 Hz, 1 H, 2-H), 7.81 (d, \(^{3}\)J = 8 Hz, 1 H, NH), 8.04–8.08 (m, 2 H, 1-H, 7-H), 8.27 (s, 1 H, 11-H), 8.77 (d, \(^{3}\)J = 7 Hz, 1 H, 4-H), 9.70 (s, 1 H, 6-H); \(^{13}\)C NMR \(\delta\) 39.2 (CH\(_{2}\)), 54.0 (CH\(_{2}\)), 58.5 (CH\(_{2}\)), 99.6 (CH), 117.2 (CH), 118.3 (CH), 119.8 (Cq), 122.5 (CH), 125.4 (CH), 129.4 (CH), 129.6 (CH), 133.4 (CH), 137.3 (Cq), 137.9 (Cq), 138.1 (CH), 153.2 (Cq); MS (ESI\(^{+}\)) m/z (%) = 618 (10) [2M + PF\(_{6}\)+, 237 (100) [M]\(^{+}\), 195 (34) [M–C\(_{3}\)H\(_{7}\)]\(^{+}\); anal. calcld (%) for C\(_{16}\)H\(_{17}\)F\(_{6}\)N\(_{2}\)P (382.3): C 50.27, H 4.48, N 7.33; found: C 50.16, H 4.37, N 7.15.
9-(Butylamino)acridizinium hexafluorophosphate (3f PF$_6^-$). Yield ca 1%, yellow solid; 1H NMR δ 0.96 (t, 3J = 7 Hz, 3 H, CH$_3$), 1.40–1.48 (m, 2 H, CH$_2$), 1.62–1.68 (m, 2 H, CH$_2$), 3.28–3.31 (m, 2 H, CH$_2$), 6.86 (s, 1 H, 10-H), 7.43–7.44 (m, 2 H, 3-H, 8-H), 7.68 (dd, 3J = 7 Hz, 3J = 8 Hz, 1 H, 2-H), 7.91 (m, 1 H, NH), 8.05–8.07 (m, 2 H, 1-H, 7-H), 8.28 (s, 1 H, 11-H), 8.77 (d, 3J = 7 Hz, 1 H, 4-H), 9.71 (s, 1 H, 6-H); 13C NMR δ 13.6 (CH$_3$), 19.7 (CH$_2$), 29.8 (CH$_2$), 42.1 (CH$_2$), 96.2 (CH$_2$), 116.7 (CH$_3$), 118.1 (2 CH), 120.5 (C$_q$), 125.2 (CH), 129.3 (CH), 129.6 (CH), 133.3 (CH), 137.4 (C$_q$), 137.6 (CH), 138.8 (C$_q$), 153.2 (C$_q$).

9-(4-Methoxyphenylamino)acridizinium bromide (3h Br$^-$). General procedure for the reaction of 9-bromoacridizinium bromide with electron-rich anilines

A solution of salt 2a (1.36 g, 4.00 mmol) and p-anisidine (1.97 g, 16.0 mmol) in i-PrOH (25 mL) was stirred under reflux for 48 h. After cooling to room temperature, the reaction mixture was concentrated to approximately one-half of its original volume and poured into Et$_2$O (300 mL); the red precipitate was separated and recrystallized twice from MeOH, to give 0.27 g (18%) of dark-red needles; R_f = 0.53; m.p. 131–132 °C (MeOH); 1H NMR (200 MHz, DMSO-d_6) δ 3.81 (s, 3 H, OCH$_3$), 7.07 (d, 3J = 9 Hz, 2 H, 2′-H, 6′-H), 7.20 (d, 3J = 2 Hz, 1 H, 10-H), 7.35 (d, 3J = 9 Hz, 2 H, 3′-H, 5′-H), 7.53 (t, 3J = 7 Hz, 1 H, 3-H), 7.63 (dd, 3J = 9 Hz, 4J = 2 Hz, 1 H, 8-H), 7.74 (dd, 3J = 7 Hz, 3J = 9 Hz, 1 H, 2-H), 8.06 (d, 3J = 9 Hz, 1 H, 1-H), 8.22 (d, 3J = 9 Hz, 1 H, 7-H), 8.43 (s, 1 H, 11-H), 8.88 (d, 3J = 7 Hz, 1 H, 4-H), 9.74 (s, 1 H, NH), 9.89 (s, 1 H, 6-H); 13C NMR (50 MHz, DMSO-d_6) δ 55.4, 98.9, 114.9 (2 C), 118.0, 118.9, 121.1, 124.2 (2 C), 125.3, 125.4, 130.0, 130.1, 131.7, 133.6, 137.5, 138.0, 138.5, 150.9, 156.7; MS (ESI$^+$): m/z (%) = 301 (100) [M$^+$]; anal. calcd (%) for C$_{20}$H$_{17}$BrN$_2$O × H$_2$O (399.3): C 60.16, H 4.80, N 7.02; found: C 60.29, H 5.05, N 7.02.

9-[4-(Dimethylamino)phenylamino]acridizinium bromide (3g Br$^-$). Yield 14%, black microcrystals; R_f = 0.59; m.p. 218–219 °C (i-PrOH); 1H NMR δ 2.94 (s, 6 H, CH$_3$), 6.83 (d, 3J = 8 Hz, 2 H, 3′-H, 5′-H), 7.10 (s, 1 H, 10-H), 7.23 (d, 3J = 8 Hz, 2 H, 2′-H, 6′-H), 7.48 (t, 3J = 6 Hz, 1 H, 3-H), 7.59 (d, 3J = 9 Hz, 1 H, 8-H), 7.69 (dd, 3J = 9 Hz, 3J = 6 Hz, 1 H, 2-H), 8.01 (d, 3J = 9 Hz, 1 H, 1-H), 8.16 (d, 3J = 9 Hz, 1 H, 7-H), 8.35 (s, 1 H, 11-H), 8.84 (d, 3J = 6 Hz, 1 H, 4-H), 9.65 (s, 1 H, NH), 9.83 (s, 1 H, 6-H); 13C NMR δ 40.3 (2 CH$_3$), 98.4 (CH), 113.1 (2 C, CH), 117.6 (CH), 118.6 (CH), 121.0 (C$_q$), 124.1 (2 CH), 125.3 (2 CH), 127.6 (C$_q$), 129.8 (CH), 129.9 (CH), 133.5 (CH), 137.5 (C$_q$), 137.8 (CH), 138.5 (C$_q$), 148.3 (C$_q$), 151.4 (C$_q$); MS (ESI$^+$): m/z (%) = 314 (100) [M$^+$], 299 (61) [M–CH$_3$]$^+$; anal. calcd (%) for C$_{21}$H$_{20}$BrN$_3$ × ½ H$_2$O (403.3): C 62.54, H 5.25, N 10.42; found C 62.59, H 5.05, N 10.41.

9-(4-Toluidino)acridizinium bromide (3i Br$^-$). General procedure for reaction with electron-poor anilines

9-Bromoacridizinium bromide (2a, 1.70 g, 5.0 mmol), p-toluidine (2.14 g, 20.0 mmol) and BF$_3$ × Et$_2$O (0.3 mL) were stirred at 130 °C under argon atmosphere for 6 h (monitoring by TLC). After cooling to room temperature, the melt was triturated with Et$_2$O until a friable powder was obtained. The solid was separated, thoroughly washed with Et$_2$O and AcOEt, dried.
and recrystallized from AcOH (with charcoal) and then from MeOH, to give 1.40 g (77 %) of orange needles, mp 255 °C (dec.); \(R_f = 0.40; \) \(^1\)H NMR \(\delta \) 2.35 (s, 3 H, CH₃), 7.28–7.34 (m, 5 H, 4 Ar-H + 10-H), 7.54 (t, \(^3J = 7 \) Hz, 1 H, 3-H), 7.65 (dd, \(^3J = 9 \) Hz, \(^4J = 2 \) Hz, 1 H, 8-H), 7.75 (dd, \(^3J = 7 \) Hz, \(^3J = 9 \) Hz, 1 H, 2-H), 8.08 (d, \(^3J = 9 \) Hz, 1 H, 1-H), 8.22 (d, \(^3J = 9 \) Hz, 1 H, 7-H), 8.47 (s, 1 H, 11-H), 8.89 (d, \(^3J = 7 \) Hz, 1 H, 4-H), 9.80 (s, 1 H, NH), 9.91 (s, 1 H, 6-H); \(^{13}\)C NMR \(\delta \) 20.6, 99.5, 118.3, 119.0, 121.2, 121.9 (2 C), 125.5 (2 C), 130.0, 130.1 (2 C), 133.5, 133.9, 136.5, 137.5, 138.0, 138.4, 153.6; MS (ESI⁺): \(m/z \) (%) = 285 (100) [M⁺]; anal. calcd (%) for C\(_{20}\)H\(_{17}\)BrN\(_2\) (365.3): C 65.76, H 4.69, N 7.67; found: C 65.53, H 4.58, N 7.65.

9-(Phenylamino)acridizinium bromide (3j Br⁻). Yield 23%, orange needles; \(R_f = 0.33; \) m.p. (dec.) 110–112 °C (AcOH–H₂O); \(^1\)H NMR \(\delta \) 7.22 (dd, \(^3J = 7 \) Hz, 1 H, Ar-H), 7.43–7.50 (m, 5 H, 4 Ar-H + 10-H), 7.55 (t, \(^3J = 7 \) Hz, 1 H, 3-H), 7.69 (dd, \(^3J = 9 \) Hz, \(^4J = 2 \) Hz, 1 H, 8-H), 7.76 (dd, \(^3J = 7 \) Hz, \(^3J = 9 \) Hz, 1 H, 2-H), 8.10 (d, \(^3J = 9 \) Hz, 1 H, 1-H), 8.26 (d, \(^3J = 9 \) Hz, 1 H, 7-H), 8.52 (s, 1 H, 11-H), 8.94 (d, \(^3J = 7 \) Hz, 1 H, 4-H), 9.97 (s, 1 H, NH); 9.98 (s, 1 H, 6-H); \(^{13}\)C NMR \(\delta \) 100.0 (CH), 118.6 (CH), 119.1 (CH), 121.3 (C\(_q\)), 121.5 (2 CH), 124.4 (CH), 125.5 (CH), 125.6 (CH), 129.6 (2 CH), 130.1 (CH), 133.6 (CH), 137.5 (C\(_q\)), 138.2 (C\(_q\)), 138.3 (CH), 139.3 (C\(_q\)), 149.7 (C\(_q\)); MS (ESI⁺): \(m/z \) (%) = 271 (100) [M⁺]; anal. calcd (%) for C\(_{19}\)H\(_{14}\)BrN\(_2\) × \(\frac{1}{2} \) H₂O (360.3): C 63.35, H 4.48, N 7.78; found: C 63.00, H 4.36, N 7.73.

9-(4-Fluorophenylamino)acridizinium bromide (3k Br⁻). Yield 57%, brick-red needles; \(R_f = 0.47; \) m.p. > 250 °C (MeCN–EtOH); \(^1\)H NMR \(\delta \) 7.31–7.35 (m, 3 Ar-H), 7.45–7.49 (m, 2 Ar-H), 7.57 (t, \(^3J = 7 \) Hz, 1 H, 3-H), 7.66 (dd, \(^3J = 9 \) Hz, \(^4J = 2 \) Hz, 1 H, 8-H), 7.77 (dd, \(^3J = 7 \) Hz, \(^3J = 9 \) Hz, 1 H, 2-H), 8.11 (d, \(^3J = 9 \) Hz, 1 H, 1-H), 8.26 (d, \(^3J = 9 \) Hz, 1 H, 7-H), 8.51 (s, 1 H, 11-H), 8.92 (d, \(^3J = 7 \) Hz, 1 H, 4-H), 9.84 (s, 1 H, NH); 9.94 (s, 1 H, 6-H); \(^{13}\)C NMR \(\delta \) 99.6 (CH), 116.4 (d, 2 CH, \(^2J_{CF} = 22.6 \) Hz), 118.5 (CH), 119.2 (CH), 121.3 (C\(_q\)), 124.1 (d, 2 CH, \(^3J_{CF} = 8.3 \) Hz), 125.4 (CH), 125.5 (CH), 130.1 (CH), 133.6 (CH), 135.5 (d, C\(_q\), \(^4J_{CF} = 2.6 \) Hz), 137.4 (C\(_q\)), 138.1 (C\(_q\)), 138.3 (CH), 150.1 (C\(_q\)), 159.0 (d, \(^1J_{CF} = 241.6 \) Hz); \(^{19}\)F-NMR (376 MHz, DMSO-d₆): \(\delta \) = -117.6 (sept, \(J = 4.3 \) Hz, Ar-F); MS (ESI⁺): \(m/z \) (%) = 289 (100) [M⁺]; anal. calcd (%) for C\(_{19}\)H\(_{13}\)BrF₂N₂ × 0.2 H₂O (372.8): C 61.21, H 3.89, N 7.51; found: C 61.16, H 3.82, N 7.57.

9-(4-Bromophenylamino)acridizinium bromide (3l Br⁻). Yield 11%, yellow-red prisms; \(R_f = 0.50; \) m.p. (dec.) 240–242 °C (i-PrOH–MeOH); \(^1\)H NMR \(\delta \) 7.41 (d, \(^3J = 9 \) Hz, 2 H, 2’-H, 6’-H), 7.51 (d, \(^4J = 1 \) Hz, 1 H, 10-H), 7.60 (t, \(^3J = 7 \) Hz, 1 H, 3-H), 7.64 (d, \(^3J = 9 \) Hz, 2 H, 3’-H, 5’-H), 7.69 (dd, \(^3J = 9 \) Hz, \(^4J = 1 \) Hz, 1 H, 8-H), 7.80 (dd, \(^3J = 9 \) Hz, \(^3J = 7 \) Hz, 1 H, 2-H), 8.15 (d, \(^3J = 9 \) Hz, 1 H, 1-H), 8.28 (d, \(^3J = 9 \) Hz, 1 H, 7-H), 8.56 (s, 1 H, 11-H), 8.95 (d, \(^3J = 7 \) Hz, 1 H, 4-H), 9.95 (s, 1 H, NH), 9.99 (s, 1 H, 6-H); \(^{13}\)C NMR (50 MHz, DMSO-d₆) \(\delta \) 100.7, 115.8, 119.0, 119.1, 119.5, 121.5, 121.9, 123.2 (2 C), 125.7, 130.1, 130.3, 132.4 (2 C), 133.7, 137.5, 138.3, 138.9, 149.0; MS (ESI⁺): \(m/z \) (%) = 349 (100) [M⁺], 270 (7) [M − Br⁺]; anal. calcd (%) for C\(_{19}\)H\(_{14}\)BrN\(_2\) (430.1): C 53.05, H 3.28, N 6.51; found: C 52.57, H 3.19, N 6.46.

9-(4-Chlorophenylamino)acridizinium bromide (3m Br⁻). Yield 15%, fine bright-orange needles; \(R_f = 0.56; \) m.p. 149–151 °C; \(^1\)H NMR \(\delta \) 7.45–7.52 (m, 5 H, 10-H + 4 Ar-H), 7.59 (t, \(^3J = 7 \) Hz, 1 H, 3-H), 7.70 (d, \(^3J = 9 \) Hz, 1 H, 8-H), 7.79 (dd, \(^3J = 7 \) Hz, \(^3J = 9 \) Hz, 1 H, 2-H),
8.14 (d, $^3J = 9$ Hz, 1 H, 1-H), 8.26 (d, $^3J = 9$ Hz, 1 H, 7-H), 8.55 (s, 1 H, 11-H), 8.95 (d, $^3J = 7$ Hz, 1 H, 4-H), 9.99 (br s, 2 H, NH + 6-H); 13C NMR δ 100.5, 118.9, 119.4, 121.4, 122.8 (2 C), 125.6 (2 C), 127.8, 129.5 (2 C), 130.0, 130.2, 133.6, 137.5, 138.2, 138.4, 149.1; MS (ESI$^-$): m/z (%) = 305 (100) $[M]^+$; anal. calcd (%) for C$_{19}$H$_{14}$BrClN$_2$: C 59.17, H 3.66, N 7.26; found C 59.06, H 3.71, N 7.23.

9-(3-Chlorophenylamino)acridizinium bromide (3n Br$^-$). Yield 20%, yellow prisms; $R_f = 0.56$; m.p. 277–279 °C; 1H NMR δ 7.23 (d, $^3J = 8$ Hz, 1 H, 6$'$_-H), 7.41–7.51 (m, 3 Ar-H), 7.56 (d, $^4J = 2$ Hz, 1 H, 10-H), 7.61 (t, $^3J = 7$ Hz, 1 H, 3-H), 7.62 (d, $^3J = 7$ Hz, 1 H, 11-H), 7.81 (dd, $^3J = 9$ Hz, 4$^J = 1.7$ Hz, 1 H, 8-H), 7.81 (dd, $^3J = 7$ Hz, 1 H, 2-H), 8.16 (d, $^3J = 9$ Hz, 1 H, 1-H), 8.28 (d, $^3J = 9$ Hz, 1 H, 7-H), 8.63 (s, 1 H, 11-H), 8.97 (d, $^3J = 7$ Hz, 1 H, 4-H), 10.02 (br s, 2 H, NH + 6-H); 13C NMR δ 101.1, 119.3, 119.4, 119.5, 120.3, 121.5, 123.7, 125.6 (2 C), 130.0, 130.2, 131.2, 133.6, 133.8, 137.4, 138.1, 138.3, 141.1, 148.7; MS (ESI$^+$): m/z (%) = 305 (100) $[M]^+$; anal. calcd (%) for C$_{19}$H$_{14}$BrClN$_2 \times \frac{1}{2}$ H$_2$O: C 57.82, H 3.83, N 7.10; found C 58.04, H 3.61, N 7.13.

9-(Phenylthio)acridizinium hexafluorophosphate (3o Br$^-$). A solution of 9-fluoroacridizinium bromide (0.834 g, 3.00 mmol) in EtOH (5 mL) was brought to reflux, and thiophenol (0.364 g, 3.30 mmol) and N-methylmorpholine (0.334 g, 3.30 mmol) were added. The reaction mixture was heated under reflux for 1 h (monitoring by TLC) and then cooled to room temperature. Water (60 mL) was added, and the mixture was extracted with AcOEt (2 × 30 mL), acidified with HBr to pH 1, and again extracted with AcOEt (3 × 30 mL). The yellow aqueous layer was concentrated in vacuo until oily product began to separate. The oil was dissolved by careful heating (~ 60 °C), and concentrated aqueous solution of NH$_4$PF$_6$ (3.26 g, 20.0 mmol) was added. The product separated as brown oil, which soon became solid and was triturated until yellow powder was obtained. The product was collected, washed with water and cold MeOH and dried in vacuo / P$_2$O$_5$, to give essentially pure product (0.541 g, 42%) as yellow solid. A sample was recrystallized from methyl ethyl ketone–MeCN, to give yellow prisms, mp 209–212 °C; $R_t = 0.69$; 1H NMR δ 7.62–7.64 (m, 3 H, Ar-H), 7.69 (s, 1 H, 10-H), 7.71–7.73 (m, 2 H, Ar-H), 7.75 (d, $^3J = 9$ Hz, 1 H, 8-H), 7.87 (t, $^3J = 7$ Hz, 1 H, 3-H), 8.01 (d, $^3J = 7$ Hz, $^3J = 8$ Hz, 1 H, 2-H), 8.36–8.38 (m, 2 H, 1-H, 7-H), 8.93 (s, 1 H, 11-H), 9.17 (d, $^3J = 7$ Hz, 1 H, 4-H), 10.26 (s, 1 H, 6-H); 13C NMR δ 120.3 (CH), 121.8 (CH), 122.5 (CH), 124.0 (C$_q$), 126.5 (CH), 128.6 (C$_q$), 128.7 (CH), 129.7 (CH), 130.4 (CH), 130.6 (2 CH), 131.3 (CH), 134.3 (CH), 134.8 (2 CH), 135.2 (C$_q$), 138.1 (C$_q$), 139.7 (CH), 148.0 (C$_q$); MS (ESI$^-$): m/z (%) = 721 (11) $[2M + PF_6]+$, 288 (100) $[M]^+$; anal. calcd (%) for C$_{19}$H$_{14}$PF$_6$NPS: C 52.66, H 3.26, N 7.40; found: C 52.78, H 3.18, N 3.24, S 7.51.

9-[(2-Acetoxyethyl)methylamino]acridizinium hexafluorophosphate (3p PF$_6^-$). A solution of 3d PF$_6^-$ (80 mg, 0.20 mmol) in pyridine (0.50 mL) was treated with acetic anhydride (0.50 mL) and the reaction mixture was stirred for 18 h at room temperature, while an orange precipitate has formed. Methanol (5 mL) was added carefully, and the mixture was evaporated to dryness in vacuo. The orange solid residue was recrystallized from ethanol, to give analytically pure
product (64 mg, 73%) as maroon prisms, m.p. (dec.) 182–184 °C; \(R_f = 0.51 \); \(^1\)H NMR \(\delta \) 1.92 (s, 3 H, CH₃CO), 3.23 (s, 3 H, NCH₃), 3.96 (t, \(J = 6 \) Hz, NCH₂), 4.32 (t, \(J = 6 \) Hz, 2 H, CH₂OAc), 7.11 (d, \(J = 2 \) Hz, 1 H, 10-H), 7.49 (t, \(J = 7 \) Hz, 1 H, 3-H), 7.71 (dd, \(J = 7 \) Hz, \(J = 9 \) Hz, 1 H, 2-H), 7.81 (dd, \(J = 10 \) Hz, \(J = 2 \) Hz, 1 H, 8-H), 8.12 (d, \(J = 9 \) Hz, 1 H, 1-H), 8.23 (d, \(J = 10 \) Hz, 1 H, 7-H), 8.38 (s, 1 H, 11-H), 8.82 (d, \(J = 7 \) Hz, 1 H, 4-H), 9.82 (s, 1 H, 6-H); \(^{13}\)C NMR \(\delta \) 20.5 (CH₃), 38.8 (CH₃), 50.2 (CH₂), 61.0 (CH₂), 99.9 (CH), 117.6 (CH), 118.5 (CH), 119.9 (Cq), 121.1 (CH), 125.4 (CH), 129.5 (CH), 129.7 (CH), 133.4 (CH), 137.3 (Cq), 138.2 (Cq), 137.8 (Cq), 143.2 (CH), 175.1 (CO); IR (KBr): \(\tilde{\nu}_{\text{max}} \) = 839 (PF₆⁻), 1510s, 1614m, 1635s, 1731s (CO) cm⁻¹; MS (ESI+): \(m/z \) (%) = 295 (100) \([M]^+\), 235 (6) \([M-\text{CH₃COO}]^+\); anal. calcd (%) for C₁₈H₁₉F₆N₂O₂P (440.3): C 49.10, H 4.35, N 6.36; found C 49.01, H 4.12, N 6.41.

2-(1,3-Dioxolan-2-yl)-1-[4-(methylthio)benzyl]pyridinium bromide (6 Br⁻). A solution of 4-(methylthio)benzyl bromide\(^{16}\) (4b; 11.9 g, 51.1 mmol) and 2-(1,3-dioxolan-2-yl)pyridine \(^{17}\) (5; 8.50 g, 56.2 mmol) in DMSO (10 mL) was stirred at room temperature under argon atmosphere for 7 days and then poured into AcOEt (250 mL). After stirring for 30 min, the solvent was decanted, and the residual oil was triturated with acetone until a white solid was obtained. It was collected, washed with acetone, Et₂O, and dried in vacuo / P₂O₅ to give 18.5 g (98%) of a white amorphous product, which was used without further purification. An analytically pure sample was obtained by crystallization from \(i-\text{PrOH–AcOEt} \): large prisms, mp 113–115 °C; \(^1\)H NMR \(\delta \) 2.49 (s, 3 H, SCH₃), 4.21 (s, 4 H, OCH₂), 6.00 (s, 2 H, CH₂N⁺), 6.46 (s, 1 H, CH(OCH₂)₂), 7.33 (br s, 4 H, Ar-H), 8.11 (ddd, \(J = 8 \) Hz, \(J = 6 \) Hz, \(J = 1 \) Hz, 1 H, 5'-H), 8.39 (dd, \(J = 8 \) Hz, \(J = 1 \) Hz, 1 H, 3'-H), 8.68 (dt, \(J = 8 \) Hz, \(J = 1 \) Hz, 1 H, 4'-H), 8.92 (dd, \(J = 6 \) Hz, \(J = 1 \) Hz, 1 H, 6'-H); \(^{13}\)C NMR (100 MHz, CD₃OD) \(\delta \) 15.1, 61.7, 67.4, 99.0, 127.3, 127.7, 129.6, 130.2, 130.5, 142.9, 147.9, 148.2, 154.2; anal. calcd (%) for C₁₆H₁₈BrNO₂S (368.3): C 52.18, H 4.93, N 3.80, S 8.71; found: C 52.25, H 4.92, N 3.87, S 8.99.

9-(Methylthio)acridizinium tetrafluoroborate (7 BF₄⁻). Salt 6 Br⁻ (5.50 g, 15.0 mmol) in methanesulfonic acid (20 mL) was stirred at 80 °C under argon atmosphere for 1 h. After cooling to 40 °C, the reaction mixture was poured onto crushed ice (60 g). After melting, concentrated aqueous solution of NaBF₄ (6.60 g, 60.0 mmol) was added. The yellow precipitate was collected, washed with cold water and dried in vacuo / P₂O₅ to give 3.80 g (81%) of a white amorphous product, which was used without further purification. An analytically pure sample was recrystallized from MeCN–AcOEt: yellow prisms; mp (dec.) 204–206 °C; \(R_f = 0.51 \); \(^1\)H NMR (200 MHz, DMSO-d₆) \(\delta \) 2.73 (s, 3 H, SCH₃), 4.21 (s, 4 H, OCH₂), 6.00 (s, 2 H, CH₂N⁺), 6.46 (s, 1 H, CH(OCH₂)₂), 7.33 (br s, 4 H, Ar-H), 8.11 (ddd, \(J = 8 \) Hz, \(J = 6 \) Hz, \(J = 1 \) Hz, 1 H, 5'-H), 8.39 (dd, \(J = 8 \) Hz, \(J = 1 \) Hz, 1 H, 3'-H), 8.68 (dt, \(J = 8 \) Hz, \(J = 1 \) Hz, 1 H, 4'-H), 8.92 (dd, \(J = 6 \) Hz, \(J = 1 \) Hz, 1 H, 6'-H); \(^{13}\)C NMR (50 MHz, DMSO-d₆) \(\delta \) 15.1, 61.7, 67.4, 99.0, 127.3, 127.7, 129.6, 130.2, 130.5, 142.9, 147.9, 148.2, 154.2; anal. calcd (%) for C₁₆H₁₈BrNO₂S (368.3): C 52.18, H 4.93, N 3.80, S 8.71; found: C 52.25, H 4.92, N 3.87, S 8.99.
Acknowledgements

This work was generously financed by the Deutsche Forschungsgemeinschaft.

References

