Regioselective synthesis of N-acyl- and N-alkyldioxolo[4,5b]phenothiazines

Gerard Boyer,* Florence Chatel, and Jean-Pierre Galy

ESA 6009, Universite d'Aix-Marseille III,
Av. Escadrille Normandie Niemen, Case 552,
F-13397 Marseille, Cedex 20, France
E-mail: gerard.boyer@mvcf.u-3mrs.fr
(received 15 Mar 00; accepted 21 Sep 00; published on the web 29 Sep 00)
DOI: http://dx.doi.org/10.3998/ark.5550190.0001.409

Abstract

We describe the preparation of new substituted dioxolo[4,5-b]phenothiazines by two slightly different reaction sequences. N-Arylation of [1,3]benzodioxol-5-amine with organolead or organobismuth reagents afforded N-aryl[1,3]benzodioxol-5-amines; subsequent Bernthsen thionation gave rise to phenothiazine ring formation and was followed by N -acylation. On the other hand, [1,3]benzodioxol-5-amine was first N -alkylated, the resulting N -alkyl[1,3]benzodioxol-5-amines were N-phenylated, before Bernthsen the final tetracyclic thionation furnished product.

Keywords: Dioxolophenothiazines, arylation, Bernthsen thionation, N -acylation.

Introduction

The phenothiazines, exemplified by chlorpromazine, are the largest and most widely investigated class of neuroleptic agents. ${ }^{1}$ The important feature of these compounds is that the amino group is separated from the nitrogen atom of the phenothiazine ring by a carbon chain. Although a wide range of derivatives has been described, ${ }^{2}$ the number of polycyclic systems bearing a phenothiazine ring has remained relatively small. We have previously reported the preparation of new tetracycle derivatives bearing a pyrazole ${ }^{3}$ or a cyclopentane ${ }^{4}$ ring fused to a phenothiazine moiety. We are now involved in the preparation of N -substituted tetracycles featuring a dioxole ring fused to the phenothiazine moiety.

Results and Discussion

To our knowledge, there are a few syntheses of dioxolo[4,5-b] phenothiazines, ${ }^{5}$ which have been prepared in only four steps using Ullmann coupling of the N-aryl $[1,3]$ benzodioxol-5-amines intermediates. Our synthetic approach is based on N -arylation of aromatic primary amines with different organolead or organobismuth reagents in the presence of a copper catalyst. ${ }^{6}$ The resulting N-aryl $[1,3]$ benzodioxol-5-amines were subjected to Bernthsen thionation ${ }^{7}$ to yield the corresponding phenothiazines.
The first key step is the synthesis of the diarylamines 3a-d from [1,3]benzodioxol-5-amine 2 by copper catalysis. Ullmann reaction gave only poor yields of desired products. ${ }^{8}$ A modified procedure ${ }^{9}$ using organometallic reagents improved the yield of this N -arylation step. With p tolyllead(IV) triacetate 1 a and (4-methoxyphenyl)lead(IV) triacetate $1 b^{10}$ the corresponding coupling products N-(4-methylphenyl)[1,3]benzodioxol-5-amine 3 a and N -(4-methoxyphenyl)[1,3]benzodioxol-5-amine 3b were obtained (Scheme 1). Similarly, the N aryl $[1,3]$ benzodioxol-5-amines 3 c -d were prepared using the arylbismuth reagents 1 c -d. ${ }^{11}$

Scheme 1

Subsequently, Bernthsen thionation ${ }^{12}$ of diarylamines 3a-d with sulfur and iodine in o dichlorobenzene brought about conversion into phenothiazine derivatives. Usually, this cyclization reaction gives rise to mixtures of isomers owing to two possible cyclization sites in the [1,3]benzodioxol moiety; thus, cyclization of compounds 3 is expected togive the linear [b]fused phenothiazine isomer (cyclization at position 6) and the angular [a]fused isomer (cyclization at position 4) (Scheme 2). When applied to compounds 3a-c, the thionation reaction turned out to be regioselective and led to single isomers, the linear dioxolo[4,5-b]phenothiazines $4 a-c$. Under the same conditions the reaction of the chloro derivative 3d was unsuccessful, leading to many side products of polymerization.

Scheme 2

The assignment of the linearly fused tetracyclic structure was unambiguously supported by the ${ }^{1} \mathrm{H}$ NMR spectra, in particular, by the evaluation of the multiplet pattern of the C-ring proton signals: In the case of $[b]$ fusion each $4-\mathrm{H}$ and $11-\mathrm{H}$ are expected to resonate as singlets, whereas in the case of $[a]$ fusion, two doublets (AB quartet) would be expected for $4-\mathrm{H}$ and $5-\mathrm{H}$ (Scheme 2). In fact, the former pattern was observed, for example the two singlets at $\delta 6.43$ and 6.61 prove the linear fused structure of $10 \mathrm{H}-[1,3]$ dioxolo[4,5-b]phenothiazine 4 c .
The next step involved the conversion of the phenothiazines 4 into N -acyl and N alkylaminoalkyl derivatives; usually, the preparation of the latter can be achieved with phase transfer catalysis and provides good results when applied to phenothiazine derivatives, ${ }^{13}$ but did not work with tetracycles 4. Acylation of 4a-c with chloroacetylchloride, followed by condensation with diethylamine furnished the corresponding N-(2-diethylaminoacetyl) derivatives 5a-c (Scheme 3). Acetic anhydride converted 4c into 10 -acetyl-10H-[1,3]dioxolo[4,5$b]$ phenothiazine 6 c .

Scheme 3

Previously described preparative procedures for direct N -amino alkylation of dioxolophenothiazines ${ }^{5 \mathrm{a}, \mathrm{b}}$ using sodium amide in xylene or sodium hydride in DMSO and N, N dimethylaminoalkyl halides proved not successful and no recovered material was obtained. We also attempted direct N -alkylation of the N -aryl[1,3]benzodioxol-5-amines 3a-d before phenothiazine cyclization but the desired products were not obtained. Therefore, we changed the strategy: In the first step, the aromatic amine 2 was mono-alkylated with different alkyl halides in the presence of sodium hydrogen carbonate in acetonitrile. ${ }^{14} 1$-Bromobutane and 1-bromo-3methylbutane gave N-butyl- and N-isopentyl[1,3]benzodioxol-5-amines 7 a and 7 b , respectively. The amines 7c and 7d were prepared in the same way. Subsequently, the reaction of N -alkyl[1,3]benzodioxol-5-amines 7a-d with triphenylbismuth (V) diacetate 1 c provided the corresponding N-alkyl- N -phenyl[1,3]benzodioxol-5-amines 8a-d (Scheme 4).

Scheme 4

Under Bernthsen's condition only two arylamines, 8a and 8 b were cyclized to linear fused tetracyclic products, 9 a and 9 b . By contrast, the arylamines, 8 c and 8 d only led to degradation products.

Conclusions

In conclusion, this report describes the preparation of a new class of tetracyclic heterocycles, N -acyl- and N-alkyl-10 H -[1,3]dioxolo[4,5-b]phenothiazines, employing organometalic reagents for N -arylation and Bernthsen thionation condition for phenothiazine ring closure. Currently, further studies are in progress to explore the scope of this approach for the synthesis of other heterocycles.

Experimental Section

General Procedures. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a BRUKER AC 400 MHz spectrometer. Chemical shifts were recorded as units relative to tetramethylsilane as the internal standard. Separations by chromatography were performed on silica gel (Merck, 70-230 mesh). 4-Tolyllead(IV) triacetate 1a, 4-methoxyphenyllead(IV) triacetate 1b, triphenylbismuth(V) diacetate 1c and tris(4-chlorophenyl)bismuth(V) diacetate 1d were prepared according to reported procedures. ${ }^{10,11}$ [1,3]benzodioxol-5-amine 2 was commercially available (JANSSEN) and was used as received.
N-(4-Methylphenyl)[1,3]benzodioxol-5-amine (3a). To a solution of [1,3]benzodioxol-5-amine 2 $(1 \mathrm{~g}, 7.3 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ at rt were slowly added p-tolyllead(IV) triacetate 1 a (3.8 $\mathrm{g}, 8 \mathrm{mmol})$ and copper(II) acetate $(0.13 \mathrm{~g}, 0.7 \mathrm{mmol})$. The mixture was stirred at rt for 4 h . Next, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added to the solution, and the resulting mixture was filtered. The insoluble part was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$, and the organic layers were dried and evaporated to give a crude reaction product, which was purified by chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluant. A white powder 3a was obtained ($0.66 \mathrm{~g}, 40 \%$), mp $102{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}): $\delta 2.20\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 5.92(\mathrm{~s}, 2 \mathrm{H}), 6.48(\mathrm{dd}, J=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~s}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO$\left.d_{6}\right): \delta 20.29,99.97,100.65,108.57,109.60,116.35,127.83,129.61,138.71,140.80,141.98$, 147.75. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2}$: C, $73.99 ; \mathrm{H}, 5.76 ; \mathrm{N}, 6.16$. Found: C, 74.23; H, 5.37; N, 5.90 .
N-(4-Methoxyphenyl)[1,3]benzodioxol-5-amine (3b). As described above, 2 ($1 \mathrm{~g}, 7.3 \mathrm{mmol}$) and (4-methoxyphenyl)lead(IV) triacetate $1 \mathrm{~b}(3.93 \mathrm{~g}, 8 \mathrm{mmol})$ gave orange needles of $3 \mathrm{~b}(1.2 \mathrm{~g}$, 66%), mp $81{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta 3.69\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 5.90(\mathrm{~s}, 2 \mathrm{H}), 6.35(\mathrm{dd}, J=8.1,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.52(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.9$
$\mathrm{Hz}, 2 \mathrm{H}$), 7.60 (s, NH); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}\right) \delta 55.17,98.66,100.45,108.13,108.50,114.73$, $119.02,137.38,139.92,140.12,147.71,153.24$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3}: \mathrm{C}, 69.12 ; \mathrm{H}, 5.39$; N, 5.76. Found: C, 69.51; H, 5.74; N, 5.92.
N-Phenyl[1,3]benzodioxol-5-amine (3c). As described above, 2 ($1 \mathrm{~g}, 7.3 \mathrm{mmol}$) and triphenylbismuth (V) diacetate $1 \mathrm{c}(1.5 \mathrm{~g}, 2.7 \mathrm{mmol})$ gave $3 \mathrm{c}(0.84 \mathrm{~g}, 54 \%), \mathrm{mp} 83{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 5.92(\mathrm{~s}, 2 \mathrm{H}), 6.54(\mathrm{dd}, J=8.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.85(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 101.14,102.60$, 108.62, 113.00, 116.27, 120.06, 129.39, 137.31, 142.92, 144.70, 148.26. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{2}$: C, $73.22 ; \mathrm{H}, 5.20 ; \mathrm{N}, 6.57$. Found: C, $73.30 ; \mathrm{H}, 4.95 ; \mathrm{N}, 6.82$.
N-(4-Chlorophenyl)[1,3]benzodioxol-5-amine (3d). As described above, $2(1 \mathrm{~g}, 7.3 \mathrm{mmol}$) and tris(4-chlorophenyl)bismuth (V) diacetate $1 \mathrm{~d}(1.8 \mathrm{~g}, 2.7 \mathrm{mmol})$ gave a white powder $3 \mathrm{~d}(0.27 \mathrm{~g}$, 41%), mp $78{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{\left.-\mathrm{d}_{6}\right): ~} \delta 5.96\right.$ (s, 2H), 6.54 (dd, $J=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.68 (dd, J $=8.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, 8.05 (s, NH); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}\right): \delta 100.90,101.49,108.64,111.70,116.54,121.69,128.96$, 137.13, 141.87, 143.96, 147.86. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{NO}_{2} \mathrm{Cl}$: C, 63.04; H, 4.07; N, 5.66. Found: C, 63.30; H, 4.35; N, 5.96.

7-Methyl-10H-[1,3]dioxolo[4,5-b]phenothiazine (4a). A mixture of N -(4-methylphenyl)[1,3]benzodioxol-5-amine $3 \mathrm{a}(0.5 \mathrm{~g}, 2.2 \mathrm{mmol}$), sulphur ($0.15 \mathrm{~g}, 4.6 \mathrm{mmol}$), and one iodine crystal was refluxed under nitrogen in dry o-dichlorobenzene (4 mL) during 6 h . The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$, filtered and concentrated. The resulting oil was chromatographed on silica gel with toluene to elute first the solvent (o-dichlorobenzene), and next a red powder $4 \mathrm{a}(80 \mathrm{mg}, 15 \%)$, mp $184{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta 2.13\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 5.90(\mathrm{~s}$, $2 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.80(\mathrm{br} \mathrm{d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 8.28(\mathrm{~s}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta 20.03,96.95,101.06,106.55,106.65,114.19$, 116.67, 126.50, 128.01, 130.75, 137.80, 140.49, 142.30, 147.03, Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~S}$: C, 65.35; H, 4.31; N, 5.44. Found: C, 65.51; H, 4.78; N, 5.63.
7-Methoxy-10H-[1,3]dioxolo[4,5-b]phenothiazine (4b). As described above, N-(4methoxyphenyl) $[1,3]$ benzodioxol- 5 -amine $3 \mathrm{~b}(0.5 \mathrm{~g}, 2 \mathrm{mmol})$ gave after chromatography with ethyl acetate as eluant a yellow powder $4 \mathrm{~b}(140 \mathrm{mg}, 25 \%)$, mp $186{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}): δ $3.65\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 5.90(\mathrm{~s}, 2 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~m}, 2 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.19(\mathrm{~s}$, NH), ${ }^{13}$ C-NMR (DMSO-d6): $\delta 55.47,96.87,101.04,106.21,106.51,111.58,113.21,114.95$, 118.04, 136.51, 138.31, 142.17, 147.10, 154.69. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 61.52 ; \mathrm{H}, 4.06$; N, 5.12. Found: C, 61.87; H, 3.81; N, 5.30.
$\mathbf{1 0 H}$-[1,3]Dioxolo[4,5-b]phenothiazine (4c). As described above, N-phenyl[1,3]benzodioxol-5amine $3 \mathrm{c}(0.5 \mathrm{~g}, 2.3 \mathrm{mmol})$, sulphur $(0.15 \mathrm{~g}, 4.6 \mathrm{mmol})$ gave after chromatography with toluene as eluant a white powder $4 \mathrm{c}(180 \mathrm{mg}, 32 \%)$, mp $202{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta 5.91(\mathrm{~s}, 2 \mathrm{H})$, $6.43(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=7.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{td}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}$, $J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{td}, J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~s}, \mathrm{NH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta$ $97.09,101.11,106.55,106.73,114.35,116.79,121.83,126.27,127.59,137.48,142.54,143.03$,
147.11. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 64.18 ; \mathrm{H}, 3.73$; N, 5.76. Found: C, 64.51; H, 4.02; N, 5.93.

2-Diethylamino-1-(7-methyl-10H-[1,3]dioxolo[4,5-b]phenothiazin-10-yl)ethan-1-one (5a).

To a solution of 7 -methyl- $10 \mathrm{H}-[1,3]$ dioxolo[4,5-b]phenothiazine $4 \mathrm{a}(0.18 \mathrm{~g}, 0.7 \mathrm{mmol}$) and toluene (7 mL) was added chloroacetyl chloride ($5.7 \mathrm{mg}, 0.5 \mathrm{mmol}$), and the mixture was kept at $35^{\circ} \mathrm{C}$ under stirring during 45 min . The solution was concentrated, and to the residual viscous oil a solution of N, N-diethylamine (2 mL) in toluene (4 mL) was added. The solution was refluxed 2 h under stirring and evaporated to yield a brown oil ($170 \mathrm{mg}, 65 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}): $\delta 0.92$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 2.32\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 2.65(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.40(\mathrm{~s}, 2 \mathrm{H}), 6.07(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 7.08(\mathrm{~s}$, $1 \mathrm{H}), 7.18$ (br d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- d_{6}): $\delta 11.38,20.44,47.50,54.10,102.24,107.36,108.18,124.74,126.65,127.93$, 127.93, 132.47, 132.76, 136.16, 136.79, 146.27, 147.12, 168.18. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$: C, 64.84; H, 5.99; N, 7.56. Found: C, 65.03; H, 5.74; N, 7.80.
2-Diethylamino-1-(7-methoxy-10H-[1,3]dioxolo[4,5-b]phenothiazin-10-yl)ethan-1-one (5b). As described above, from $4 \mathrm{~b}(0.18 \mathrm{~g}, 0.7 \mathrm{mmol})$ after work up a brown oil 5 b ($200 \mathrm{mg}, 75 \%$) was obtained. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): ~ \delta 0.80(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 2.44(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.31(\mathrm{~s}$, $2 \mathrm{H}), 3.76\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 6.08(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 6.91(\mathrm{dd}, J=8.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.09(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- d_{6}): $\delta 12.10,46.88,54.65$, $55.73,102.21,107.36,108.19,112.35,113.21,124.68,127.83,131.83,132.48,133.61,146.15$, 147.10, 157.38, 169.42. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 62.16$; H, 5.74; N, 7.25. Found: C, 62.47; H, 5.85; N, 7.41.

2-Diethylamino-1-(10H-[1,3]dioxolo[4,5-b]phenothiazin-10-yl)ethan-1-one (5c). As described above, $4 \mathrm{c}(0.1 \mathrm{~g}, 0.7 \mathrm{mmol})$ gave a red oil $5 \mathrm{c}(180 \mathrm{mg}, 73 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta 0.81(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 2.45(\mathrm{br} \mathrm{q}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.36(\mathrm{~s}, 2 \mathrm{H}), 6.05(\mathrm{~s}, 2 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.59 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta 11.95,46.83,54.57,102.23,107.35,108.28$, 124.60, 126.85, 127.21, 127.21, 127.72, 132.50, 132.85, 138.92, 146.12, 147.09, 169.08. Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$: C, 64.02; H, 5.66; N, 7.86. Found: C, 64.29; H, 5.91; N, 8.01.
10-Acetyl-10H-[1,3]dioxolo[4,5-b]phenothiazine (6c). A mixture of $4 \mathrm{c}(0.2 \mathrm{~g}, 0.8 \mathrm{mmol}$) in acetic anhydride (5 mL) was stirred at rt during 8 h . The solution was filtrated and evaporated to yield a red oil $6 \mathrm{c}(0.107,47 \%)$ was left. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}): $\delta 2.11\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 6.06(\mathrm{~s}, 2 \mathrm{H}), 7.13$ (s, 1H), $7.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.56(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}_{-} \mathrm{d}_{6}\right) \delta 21.31,102.24,107.27,108.47,124.55,126.68$, 127.24, 127.38, 127.70, 132.74, 132.74, 139.08, 146.14, 147.10, 172.23. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 63.14$; H, 3.89; N, 4.91. Found: C, 63.22; H, 4.02; N, 4.96.
N-Butyl[1,3]benzodioxol-5-amine (7a). To a solution of $2(2 \mathrm{~g}, 14.6 \mathrm{mmol})$ in dry acetonitrile $(30 \mathrm{~mL})$ was added 1 -bromobutane ($2.2 \mathrm{~g}, 16 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(1.3 \mathrm{~g}, 15.4 \mathrm{mmol})$. The solution was refluxed under stirring during 8 h , neutralised with $\mathrm{HCl}(2 N, 7 \mathrm{~mL})$ and methylene chloride (20 mL) was added. The organic phase was separated, washed twice with water (40 mL) and evaporated. The residue was dissolved in $\mathrm{MeOH}\left(20 \mathrm{~mL}\right.$), acidified with $\mathrm{H}_{2} \mathrm{SO}_{4}$ (3 mL),
filtrated, and the filtrate was concentrated to 5 mL volume. The mixture was neutralized with $\mathrm{NaHCO}_{3}(1.5 \mathrm{~g}, 17.9 \mathrm{mmol})$ and dissolved in methylene chloride $(20 \mathrm{~mL})$. The organic phase was separated, washed twice with water $(20 \mathrm{~mL})$ and evaporated to give a yellow oil $7 \mathrm{a}(1.6 \mathrm{~g}$, $58 \%){ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta 0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $5.20(\mathrm{br} \mathrm{s}, \mathrm{NH}), 5.81(\mathrm{~s}, 2 \mathrm{H}), 5.95(\mathrm{dd}, J=8.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.63$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- d_{6}): $\delta 13.89,19.89,30.95,43.44,94.93,99.89$, 102.96, 108.46, 137.73, 145.16, 147.78. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}$: C, 68.37; H, 7.82; N, 7.25. Found: C, 68.15; H, 7.94; N, 6.98.
N-Isopentyl[1,3]benzodioxol-5-amine (7b). As described above, 1-bromo-3-methylbutane (2.4 $\mathrm{g}, 16 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(1.3 \mathrm{~g}, 15.4 \mathrm{mmol})$ gave a yellow oil $7 \mathrm{~b}(1.8 \mathrm{~g}, 61 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d d_{6}) $\delta 0.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.66(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.86$ (s, 2H), $6.14(\mathrm{dd}, J=8.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (DMSO- d_{6}): $\delta 22.34,25.27,37.00,43.23,96.49,100.21,105.35,108.38,139.47,142.27$, 147.73. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}$: C, 69.54; H, 8.27; N, 6.76. Found: C, 69.17; H, 8.74; N, 6.36.
\boldsymbol{N}-Isopropyl[1,3]benzodioxol-5-amine (7c). As described above, 2-bromopropane (1.97 g, 16 mmol) and $\mathrm{NaHCO}_{3}(2.2 \mathrm{~g}, 26.3 \mathrm{mmol})$ gave an orange oil 7c $(1.2 \mathrm{~g}, 47 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO$\left.d_{6}\right): \delta 1.08(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}), 3.42(\mathrm{hept}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~s}, \mathrm{NH}), 5.83(\mathrm{~s}, 2 \mathrm{H}), 5.96(\mathrm{dd}, J$ $=8.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta$ $22.56,43.81,95.94,99.92,103.86,108.58,137.65,144.17,147.85$. Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}$: C, 67.02; H, 7.31; N, 7.82. Found: C, 67.25; H, 7.48; N, 8.19.
\boldsymbol{N}-(1-Methylbutyl)[1,3]benzodioxol-5-amine (7d). As described above, 2-bromopentane (2.4 g , $16 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(1.3 \mathrm{~g}, 15.4 \mathrm{mmol})$ gave a yellow oil $7 \mathrm{~d}(1.6 \mathrm{~g}, 52 \%) .{ }^{1} \mathrm{H}$-NMR (DMSO-d d_{6} : $\delta 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~m}, 2 \mathrm{H}), 3.27$ $(\mathrm{m}, 1 \mathrm{H}), 5.08(\mathrm{br} \mathrm{s}, \mathrm{NH}), 5.81(\mathrm{~s}, 2 \mathrm{H}), 5.97(\mathrm{dd}, J=8.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, 6.62 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- d_{6}): $\delta 14.15,18.95,20.39,38.62,47.96,95.47$, 99.95, 103.78, 108.62, 137.65, 144.23, 147.87. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}$: C, 69.54; H, 8.27; N, 6.76. Found: C, 69.81; H, 7.98; N, 6.90.
N-Butyl- N-phenyl[1,3]benzodioxol-5-amine (8a). To a solution of 7 ($1 \mathrm{~g}, 5.2 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at rt were slowly added triphenylbismuth (V) diacetate $1 \mathrm{c}(1 \mathrm{~g}, 1.8 \mathrm{mmol})$ and copper(II) acetate ($0.09 \mathrm{~g}, 0.5 \mathrm{mmol}$). The mixture was stirred at rt during 4 h . $\mathrm{Next}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL})$ was added, and the resulting mixture was filtered. The insoluble part was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$, and the organic layers were dried and evaporated to give a crude reaction product, which was purified by chromatography on silica gel with toluene as the eluent. A yellow oil was recovered, yielding $0.30 \mathrm{~g}(22 \%)$ of $8 \mathrm{a} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta 0.87(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}), 1.31(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.01(\mathrm{~s}, 2 \mathrm{H}), 6.56$ (dd, $J=8.3,2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~m}, 2 \mathrm{H}), 6.70(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~m}$, 2 H); ${ }^{13} \mathrm{C}$-NMR (DMSO-d6): $\delta 13.86,19.67,29.18,51.52,101.21,106.82,108.75,115.95$, $118.10,118.36,129.89,141.64,143.82,148.11,148.66$. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, 75.81 ; H, 7.11; N, 5.20. Found: C, 76.03; H, 7.45; N, 5.47.
\boldsymbol{N}-Isopentyl- \boldsymbol{N}-phenyl[1,3]benzodioxol-5-amine (8b). As described above, $7 \mathrm{bb}(1 \mathrm{~g}, 4.8 \mathrm{mmol})$ and triphenylbismuth(V) diacetate $1 \mathrm{c}(1.1 \mathrm{~g}, 1.9 \mathrm{mmol})$ gave an orange oil $8 \mathrm{~b}(0.45 \mathrm{~g}, 33 \%) .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 0.88(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.61(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{td}, J=7.8,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.58$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.02(\mathrm{~s}, 2 \mathrm{H}), 6.56(\mathrm{dd}, J=8.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~m}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.71(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta 22.53,25.64$, $35.73,50.19,101.22,106.84,108.76,115.82,118.06,118.40,129.02,141.59,143.85,148.11$, 148.56. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2}$: C, $76.29 ; \mathrm{H}, 7.47 ; \mathrm{N}, 4.94$. Found: C, $76.51 ; \mathrm{H}, 7.80 ; \mathrm{N}$, 5.12.
N-Isopropyl- N-phenyl-[1,3]benzo-dioxol-5-amine (8c). As described above, 7 c ($1 \mathrm{~g}, 5.6 \mathrm{mmol}$) and triphenylbismuth(V) diacetate $1 \mathrm{c}(1.2 \mathrm{~g}, 2.2 \mathrm{mmol})$ gave a pale yellow oil $8 \mathrm{c}(0.54 \mathrm{~g}$, 38%). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta 1.07(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}), 4.24$ (hept, $\left.J=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.05(\mathrm{~s}, 2 \mathrm{H})$, $6.50(\mathrm{dd}, J=8.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~m}, 1 \mathrm{H})$, $6.94(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta 20.75,47.14,101.43,108.65,110.53$, $115.24,117.30,118.70,128.96,137.12,145.21,148.07,148.65$. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}: \mathrm{C}$, 75.27; H, 6.71; N, 5.49. Found: C, 75.53; H, 6.39; N, 5.79.
\boldsymbol{N}-(1-Methylbutyl)- \boldsymbol{N}-phenyl[1,3]benzodioxol-5-amine (8d). As described above, 7d (1g, 4.8 $\mathrm{mmol})$ and triphenylbismuth (V) diacetate $1 \mathrm{c}(1.1 \mathrm{~g}, 1.9 \mathrm{mmol})$ gave a brown oil $8 \mathrm{~d}(0.20 \mathrm{~g}$, $15 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~m}, 2 \mathrm{H})$, $1.36(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 2 \mathrm{H}), 6.50(\mathrm{dd}, J=8.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~m}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta$ $13.91,18.45,19.52,37.02,51.81,101.20,108.42,109.84,115.57,117.35,121.97,128.76$, 137.59, 144.79, 147.89, 148.74. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2}$: C, 76.29; H, 7.47; N, 4.94. Found: C, 76.34; H, 7.63; N, 5.22.
10-Butyl-10H-[1,3]dioxolo[4,5-b]phenothiazine (9a). A solution of 8 a ($0.30 \mathrm{~g}, 1.1 \mathrm{mmol}$), sulphur ($0.07 \mathrm{~g}, 2.2 \mathrm{mmol}$), and one iodine crystal was refluxed under nitrogen in dry odichlorobenzene (2 mL) during 8 h . The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$, filtered and concentrated. The resulting oil was chromatographed on silica gel with $\mathrm{Et}_{2} \mathrm{O}$ to elute first the solvent (o-dichlorobenzene) followed by a viscous green oil $8 \mathrm{a}(0.07 \mathrm{~g}, 21 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO$\left.d_{6}\right): \delta 0.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.95(\mathrm{~s}, 2 \mathrm{H})$, $6.72(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{br} \mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{br} \mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=$ $7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.18 (td, $J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta 13.64,19.44,28.95$, 46.70, 98.97, 101.46, 107.18, 114.58, 115.93, 122.36, 124.94, 127.01, 127.52, 140.17, 142.88, 145.84, 147.67. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 68.20$; H, 5.72; N, 4.68. Found: C, 68.33; H, 5.87; N, 4.49.

10-Isopentyl-10H-[1,3]dioxolo[4,5-b]phenothiazine (9b). A solution of 8 b ($0.45 \mathrm{~g}, 1.6 \mathrm{mmol}$), sulphur ($0.1 \mathrm{~g}, 3.2 \mathrm{mmol}$) and one iodine crystal was refluxed under nitrogen in dry o dichlorobenzene (3 mL) during 8 h . The mixture was extracted as described above and chromatographed to yield a red oil $9 \mathrm{~b}(0.14 \mathrm{~g}, 28 \%)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- d_{6}): $\delta 0.89(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $6 \mathrm{H}), 1.55(\mathrm{q}, J=7.8,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.90(\mathrm{~s}, 2 \mathrm{H}), 6.53(\mathrm{~s}$, $1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{td}$,
$J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}$) ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-d_{6}\right): \delta 22.66,26.31,36.18,46.12,98.54,101.50,107.68$, 115.56, 115.56, 122.45, 126.06, 127.31, 127.45, 140.62, 143.17, 146.30, 147.82. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 68.98 ; \mathrm{H}, 6.11 ; \mathrm{N}, 4.47$. Found: C, 69.18; H, 6.35; N, 4.24.

References

1. Gupta, R. R. Phenothiazines and 1,4-benzothiazines. Chemical and biomedical aspects. (Bioactive molecules, 4); Elsevier: Amsterdam, 1988. (b) Kaiser, C.; Setler, P. A. Burger's Medicinal Chemistry, Vol. 3; 4rd ed., Wolff, M.E., Ed.; John Wiley and Sons: New York, 1981, 859. (c) Horn, A. S. Comprehensive Medicinal Chemistry, Vol. 3; Emmett, J.C., Ed., Pergamon Press, 1980; 321.
2. Massie, S. P. Chem. Rev. 1954, 54, 797. (b) Sainsbury, M. Comprehensive Heterocyclic Chemistry, Vol. 3; Boulton, A.J. and McKillop, A., Eds, Pergamon Press, 1984; 995.
3. Boyer, G.; Galy, J. P.; Barbe, J. Heterocycles 1995, 41, 487. (b) Boyer, G.; Galy, J. P.; Faure, R.; Barbe, J. Magn. Res. Chem. 1994, 32, 537.
4. Morel, S.; Chatel, F.; Boyer, G.; Galy, J.P. J. Chem. Res. 1998, (S), 4; (M), 115.
5. Craig, P. N.; Gordon, M.; Lafferty, J. J.; Lester, B. M.; Saggiomo, A. J.; Zirkle, C. L. J. Org. Chem. 1961, 26, 1138. (b) Nodiff, E. A.; Tanabe, K.; Schnierle, F.; Morosawa, S.; Hoffman, T. W.; Takeda, K.; Manian, A. A. J. Heterocycl. Chem. 1970, 7, 203. (c) Suzuki, J. K.; Zirnis, A., Manian, A. A. J. Heterocycl. Chem. 1976, 13, 1067. (d) Imakura, Y.; Konishi, T.; Uchida, K.; Sakurai, H.; Kobayashi, S.; Haruno, A.; Tajima, K.; Yamashita, S. Chem. Pharm. Bull. 1994, 42, 3, 500.
6. Abramovitch, R. A.; Barton, D. H. R.; Finet, J. P. Tetrahedron, 1988, 44, 3039.
7. Bodea, C.; Silberg, I. Advances in Heterocyclic Chemistry, Vol. 9; Katrizky A. R. and Boulton, A. J. Eds, Academic Press, 1968; 321.
8. Kimura, M; Kato, A.; Okabayashi, I. J. Heterocycl. Chem. 1992, 29, 73. (b) LopezAlvarado, P., Avendano, C.; Menendez, J. C. J. Org. Chem., 1995, 60, 17.
9. For application of aryllead(IV) triacetates and triarylbismuth(V) diacetates in N -arylation of amines, see: Barton, D. H. R.; Donnelly, D. M. X., Finet, J. P., Guiry, P.J. J. Chem. Soc., Perk. Trans. 1, 1991, 9, 2095; (b) Barton, D. H. R.; Finet, J.P., Khamsi, J. Tetrahedron Lett., 1986, 27, 3615.
10. Kozyrod, R. P.; Pinhey, J. T. Aust. J. Chem. 1985, 38, 713.
11. Barton, D. H. R.; Finet J. P. Pure Applied Chem., 1987, 59, 937.
12. Landquist L. K. Comprehensive Heterocyclic Chemistry, Vol. 4; Sammes, P. G. Ed, Pergamon Press, 1978; 1102.
13. Masse, J. Synthesis 1977, 341.
14. Connaughie, A. W.; Jenkins, T. C. J. Med. Chem. 1995, 38, 3497.
