A facile synthesis of benzyl- α , β -unsaturated carboxylic esters

Alan R. Katritzky,* Suoming Zhang,^s Alessandro Soares, and Mingyi Wang

Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200 E-mail: katritzky@chem.ufl.edu

Submitted in honor of Kjell Undheim on the occasion of his 70th anniversary (received 26 Jul 01; accepted 26 Nov 01; published on the web 04 Dec 01)

Abstract

A simple, convenient and practical method is reported for the preparation of benzyl α , β -unsaturated carboxylates using commercially available and inexpensive reagents under mild conditions.

Keywords: Benzyl α , β -unsaturated carboxylates, synthesis

Introduction

Although diverse benzyl esters of α,β -unsaturated acids are often required in organic synthesis, only 5 such compounds are commercially available. While numerous methods have been reported for the esterification of carboxylic acids,¹ relatively little has been documented on synthesis of α,β -unsaturated carboxylic esters. We now report a simple, convenient, high yielding preparation for benzyl α,β -unsaturated carboxylates from the corresponding acids and benzyl bromide.

Results and Discussion

In the present work, benzyl α,β -unsaturated carboxylates **3a**–**j** were prepared from equimolar amounts of an α,β -unsaturated carboxylic acid **1** and benzyl bromide **2** using sodium bicarbonate as a base (Scheme 1). The results are summarized in Table 1. Benzyl esters have been prepared previously by the following methods: i) reaction of carboxylate anions with alkyl halides,² ii) condensations of carboxylic acids or derivatives with benzyl alcohol,³ and iii) the use of alkyl or aryl triflates.⁴ The yields obtained in the present study compare favorably to those reported in the literature (see Table 1).

Scheme 1

		Present work		Literature		
Entry	R	Mp (oC)	Yield (%)	Mp (0C)	Yield	Ref.
					(%)	
a	Phenyl	33-34	92	33-33.5	89	3a
b	<i>m</i> -Nitrophenyl	68-69	87	_	-	-
с	3,4-Methylenedioxyphenyl	85-86	95	_	-	
d	<i>p</i> -Nitrophenyl	109-111	86	112-113	82	4b
e	<i>p</i> -Chlorophenyl	239-241	82	_	-	-
f	3,4,5-Trimethoxyphenyl	85-86	88	87-89	85	4a
g	2-Furyl	oil	78	42-43	86	3f
h	2-Thienyl	51-53	93	<u></u>	<u></u>	<u></u>
i	Methyl	oil	90	oil	55	3b
j	<i>n</i> -Propyl	oil	87	oil	98	2b

Table 1. Benzy	l α,β-unsaturated-	carboxylates (3)
----------------	--------------------	------------------

• **3b-c**, **e**, **h** are novel compounds.

Products **3a-j** were characterized spectroscopically: they show ¹H NMR signals in the 5.16– 5.28 ppm range for the benzyl protons, at 7.74–7.82 ppm (d, J = 16.0 Hz) and 6.30–6.90 ppm (d, J = 16.0 Hz) for the aryl or heteroaryl *trans* double bond proton, and at 5.80–5.90 ppm (d, J = 14.0-16.0 Hz) for the alkyl *trans* double bond proton. These spectra data are consistent with those reported. ^{2a,3a,3b,4}

In conclusion, an economical and practical method for the synthesis of benzyl α,β unsaturated carboxylates has been developed using commercially available and inexpensive reagents under mild conditions.

Experimental Section

General Procedures. Melting points were determined on a MEL-TEMP capillary melting point apparatus equipped with a Fluke 51 digital thermometer. NMR spectra were recorded in $CDCl_3$ (unless stated otherwise) with tetramethylsilane as the internal standard for ¹H (300 MHz) and

the solvent for ${}^{13}C$ (75 MHz).

Typical procedure for the preparation of benzyl α, β-unsaturated carboxylates. To a solution of an α,β-unsaturated carboxylic acid (10 mmol) and benzyl bromide (1.88g, 11 mmol) in 30 mL of DMF/1,4-dioxane (1:1), NaHCO₃ (0.84g, 10 mmol) was added at room temperature. The reaction mixture was heated and stirred at 90 °C for 24 h. Cooled to room temperature, the reaction mixture was diluted with EtOAc and washed with saturated NaCl and H₂O. The organic layer was dried over MgSO₄. Evaporation *in vacuo* provided crude product, which was recrystallized from the appropriate solvents to give the pure benzyl carboxylate in good to excellent yield.

Benzyl (*E***)-cinnamate (3a).** White needles from hexane-ethyl acetate (92%), mp 33–34 °C (lit.^{3a} 33–33.5 °C); ¹H NMR δ 7.78 (d, *J* = 16.1 Hz, 1H), 7.46–7.33 (m, 10 H), 6.46 (d, *J* = 16.1 Hz, 1H), 5.23 (s, 2H); ¹³C NMR δ 166.6, 144.9, 135.9, 134.2, 130.2, 128.7, 128.4, 128.2, 128.1, 127.9, 117.7, 66.2.

Benzyl (*E*)-*m*-nitrocinnamate (3b). White prisms from hexane-ethyl acetate (87%), mp 68–69 °C. ¹H NMR δ 8.34 (d, *J* = 2.2 Hz, 1H), 8.21 (dd, *J* = 1.0, 8.3 Hz, 1H), 7.80 (d, *J* = 8.3 Hz, 1H), 7.74 (d, *J* = 16.1 Hz, 1H), 7.56 (t, *J* = 8.1 Hz, 1H), 7.25–7.43 (m, 5H), 6.60 (d, *J* = 16.1 Hz, 1H), 5.27 (s, 2H); ¹³C NMR δ 165.8, 148.5, 142.1, 135.9, 135.6, 133.5, 129.9, 128.5, 128.3, 128.2, 124.4, 122.3, 120.9, 66.6. Anal. Calcd for C₁₆H₁₃NO₄: C, 67.84; H, 4.63; N, 4.94. Found: C, 67.60; H, 4.95; N, 4.94.

Benzyl (*E*)-3-(3,4-methoxylidenephenyl)acrylate (3c). White microcrystals from hexane-ethyl acetate (95%), mp 85–86 °C; ¹H NMR δ 7.61 (d, *J* =16.0 Hz, 1H), 7.40–7.30 (m, 5H), 6.99–6.94 (m, H), 6.76 (d, *J* = 7.9 Hz, 1H), 6.29 (d, *J* = 16.0 Hz, 1H), 5.94 (s, 2H), 5.22 (s, 2H); ¹³C NMR δ 166.8, 149.5, 148.0, 144.7, 136.1, 128.6, 128.4, 128.1, 128.0, 124.4, 115.6, 108.4, 106.3, 101.4, 66.1. Anal. Calcd for C₁₇H₁₄O₄: C, 72.33; H, 5.00. Found: C, 72.08; H, 5.15.

Benzyl (*E*)-*p*-nitrocinnamate (3d). Yellow needles from hexane-ethyl acetate (86%), mp 109–111 °C (lit.^{4b} 112-113 °C); ¹H NMR (DMSO-d₆) δ 8.20 (d, *J* = 8.7 Hz, 2H), 7.99 (d, *J* = 8.6 Hz, 2H), 7.80 (d, *J* = 16.1 Hz, 1H), 7.53–7.28 (m, 5H), 6.91 (d, *J* = 16.1 Hz, 1H), 5.28 (s, 2H); ¹³C NMR (DMSO-d₆) δ 165.5, 148.0, 142.2, 140.4, 136.0, 129.4, 128.5, 128.2, 128.0, 123.8, 122.1, 66.0.

Benzyl (*E*)-4-chlorocinnamate (3e). White needles from hexane-ethyl acetate (82%), mp 239–241 °C; ¹H NMR δ 7.73–7.68 (m, 3H), 7.47–7.34 (m, 6H), 6.46 (d, *J* = 16.1 Hz, 1H), 5.25 (s, 2H); ¹³C NMR δ 166.8, 144.2, 137.5, 136.5, 134.3, 130.7, 129.9, 129.4, 129.1, 128.9, 119.8, 66.7. Anal. Calcd for C₁₆H₁₃ClO₂: C, 70.46; H, 4.80. Found: C, 70.81; H, 4.81.

Benzyl (*E*)-3,4,5-trimethoxyphenylacrylate (3f). Yellow microcrystals from hexane-ethyl acetate (88%), mp 85–86 °C (lit.^{4a} 87–89 °C); ¹H NMR δ 7.64 (d, *J* =15.9 Hz, 1H), 7.41–7.37 (m, 5H), 6.75 (s, 2H), 6.40 (d, *J* =15.8 Hz, 1H), 5.25 (s, 2H), 3.88 (s, 9H); ¹³C NMR δ 166.7, 153.4, 145.1, 136.0, 128.8, 128.6, 128.3, 117.0, 116.5, 105.4, 105.2, 66.3, 60.9, 56.1.

Benzyl (*E*)-3-(furan-2-yl)acrylate (3g). Dark brown oil (78%) (lit.^{3f} 42 °C); ¹H NMR

 δ 7.49–7.36 (m, 6H), 6.61 (t, *J* = 3.2 Hz, 1H), 6.47 (d, *J* = 1.6 Hz, 1H), 6.36 (d, *J* = 15.8 Hz, 1H), 5.23 (s, H); ¹³C NMR δ 166.8, 150.8, 144.8, 136.1, 131.4, 128.5, 128.1, 115.4, 114.9, 112.2, 66.2.

Benzyl (*E*)-3-(thien-2-yl)acrylate (3h). White needles from hexane-ethyl acetate (93%), mp 51-53 °C; ¹H NMR δ 7.82 (d, J = 15.7 Hz, 1H), 7.47–7.30 (m, 6H), 7.25 (d, J = 3.3 Hz, 1H), 7.05 (t, J = 3.8 Hz, 1H), 6.29 (d, J = 15.7 Hz, 1H), 5.23 (s, 2H); ¹³C NMR δ 166.2, 139.1, 137.2, 135,8, 130.8, 128.3, 128.2, 128.0, 127.9, 127.8, 116.2, 66.0. Anal. Calcd for C₁₄H₁₂O₂S: C, 68.83; H, 4.95. Found: C, 68.53; H, 5.12.

Benzyl (*E*)-2-butenoate (3i). Colorless oil (90%); ¹H NMR δ 7.35–7.32 (m, 5H), 7.08–6.96 (m, 1H), 5.89 (d, *J* = 15.5 Hz, 1H), 5.16 (s, 2H), 1.85 (d, *J* = 5.9 Hz, 3H); ¹³C NMR δ 166.2, 145.1, 136.0, 128.4, 128.0, 122.3, 65.8, 17.9.

Benzyl (*E*)-2-hexenoate (3j). Colorless oil (87%); ¹H NMR δ 7.41–7.34 (m, 5H), 7.06–6.97 (m, 1H), 5.87 (d, *J* = 14.1 Hz, 1H), 5.17 (s, 2H), 2.18–2.14 (m, 2H), 1.51–1.44(m, 2H), 0.94 (t, *J* = 5.6 Hz, 3H); ¹³C NMR δ 166.4, 149.8, 136.1, 128.4, 128.1, 128.0, 121.0, 65.9, 34.1, 21.1, 13.6.

References

[§] Current address: Neurogen Corporation, 35 Northeast Industrial Road, Branford, CT 06405.

- 1. Haslam, E. Tetrahedron 1980, 36, 2409.
- 2. (a) Parrish, J. P.; Dueno, E. E.; Kim, S. I.; Jung, K. W. Synth. Commun. **2000**, *30*,2687. (b) Lee, J. C.; Oh, Y. S.; Cho, S. H.; Lee, J. I. Org. Prep. Proced. Int. **1996**, 28, 480.
- (a) Kunishima, M.; Kawachi, C.; Morita, J.; Terao, K.; Iwasaki, F.; Tani, S. *Tetrahedron* 1999, 55, 13159. (b) Sun, S.; Edwards, L.; Harrison, P. J. Chem. Soc., Perkin Trans. 1 1998, 3, 437. (c) Folmer, J. J.; Weinreb, S. M. *Tetrahedron Lett.* 1993, 34, 2737. (d) Miyasaka, T.; Ishizu, H.; Sawada, A. Chem. Lett. 1986, 871. (e) Ahmed, A.; Fukuda, H.; Inomata, K.; Kotake, H. Chem. Lett. 1980, 1161. (f) Bartlett, P. D.; Ross, S. D. J. Am. Chem. Soc. 1947, 69, 460.
- 4. (a) Ulibarri, G.; Choret, N.; Bigg, D. C. H. *Synthesis* **1996**, *11*, 1286. (b) Echavarren, A. M.; Stille, J. K. J. Am. Chem. Soc. **1987**, *109*, 5478.