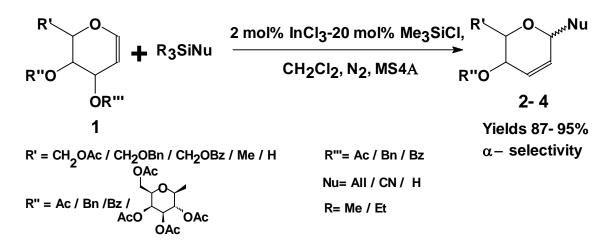
Synergistic enhancement of catalytic activity of InCl₃ - Me₃SiCl combination towards carbon Ferrier rearrangement in glycal derivatives

Rina Ghosh,* Arijit Chakraborty, and Swarupananda Maiti

Department of Chemistry, Jadavpur University, Kolkata 700 032, India E-mail: <u>ghoshrina@yahoo.com</u>

Dedicated to Professor (Mrs.) A. Chatterjee on her 85th anniversary (received 21 Jan 04; accepted 23 Apr 04; published on the web 30 Apr 04)

Abstract


InCl₃ (2 mol%) in combination with Me₃SiCl (20 mol%) efficiently catalyze Ferrier rearrangement in a variety of glycal derivatives with different silyl nucleophiles to afford the corresponding C-pseudoglycals or unsaturated pyrans in nearly quantitative yields. The stereoselectivities of the C-glycosides are good to excellent in favor of the α -anomers. A stoichiometric amount of InCl₃ is necessary for similar transformations in the absence of Me₃SiCl. The InCl₃ can be recovered and reused without any loss of its activity.

Keywords: InCl₃, Me₃SiCl, combination catalyst, glycals, C-glycosylation, carbon Ferrier rearrangement

Introduction

Because of numerous applications, the synthesis of C-glycosides has attracted considerable attention during the last two decades. These are potential chiral building blocks for the synthesis of a number of biologically important macromolecules like palytoxin, spongistatin, halichondrin *etc.*¹ The pharmacological importance of naturally occurring C-nucleosides and inhibitory role of C-glycosides towards carbohydrate processing enzymes add more impetus in this direction.² Because of the presence of the double bond or cyano group, which can be readily functionalized, allyl C-pseudoglycals,³ glycosyl cyanides or pyrans are attractive chiral synthetic intermediates.⁴ Since its first report⁵ the Ferrier rearrangement has been extensively exploited for the C-glycosylation reactions of glycals. A variety of Lewis acids⁶ and other reagents⁷ have been utilized towards this end. However, many of the reported procedures have their own limitations in terms of yields, stereoselectivity, amount and reusability of the catalyst, besides the stringent experimental conditions in some cases. In an earlier report^{6f} we demonstrated that a

stoichiometric amount of InCl₃ promotes carbon Ferrier rearrangement in glycal derivatives in excellent yields and stereoselectivities. While we were exploring the possibility of a catalytic version of InCl₃ mediated C-glycosylation, Baba *et. al.*⁸ reported that a number of organic transformations can be efficiently carried out based on the combination catalyst incorporating InCl₃ and R¹R²R³SiCl due to remarkable enhancement of Lewis acidity of such systems. We were delighted to observe that a combination of InCl₃ and Me₃SiCl generates a highly efficient catalyst system in C-glycosylation of glycals. We present, herein, our results on Ferrier rearrangement in glycal derivatives using this combination catalyst (Schemes 1 and 2, Tables 1 and 2).

Scheme 1

Results and Discussion

By varying the proportions of the InCl₃-Me₃SiCl combination (Table 1), the minimum catalyst load was established in the reaction of per-O-acetyl-D-glucal (**1a**) with allyltrimethylsilane in dichloromethane at room temperature in the presence of 4Å molecular sieves. Thus, a combination of 2 mol% InCl₃ and 20 mol% Me₃SiCl was found to be the optimum condition for maximum yield and stereoselectivity (entry 6, Table 1). It may be mentioned that C-glycosylation in glucal, **1a** can also be effected using ca 50 mol% Me₃SiCl in excellent yield but with reduced stereoselectivity (entry 3, Table 1), whereas a stoichiometric amount of InCl₃ is necessary for the generation of allyl C-pseudoglycal (**2a**) from **1a** in almost quantitative yield with very good stereoselectivity (entry 1, Table 1). Thus the enhancement of the catalytic activity and high stereoselectivity of the InCl₃-Me₃SiCl combination may involve a synergistic process.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Entry	Catalyst load (mol%)	Time (h)	% Yield ^a	α/β^{b}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	$InCl_3(100) + Me_3SiCl(0)$	1	95	9:1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	$InCl_3(50) + Me_3SiCl(0)$	24	incomplete	
5 $InCl_3(5) + Me_3SiCl(30)$ 1 88 6 $InCl_3(2) + Me_3SiCl(20)$ 1 90	3	$InCl_3(0) + Me_3SiCl(50)$	3.5	95	4:1
6 $InCl_3(2) + Me_3SiCl(20)$ 1 90	4	$InCl_3(0) + Me_3SiCl(30)$	24	65	
	5	$InCl_3(5) + Me_3SiCl(30)$	1	88	7:1
7 $InCl_3(2) + Me_3SiCl(10)$ 24 17	6	$InCl_3(2) + Me_3SiCl(20)$	1	90	9:1
	7	$InCl_3(2) + Me_3SiCl(10)$	24	17	
8 $InCl_{3.}3H_{2}O(2) + Me_{3}SiCl(20)$ 1 86 8.	8	$InCl_{3}.3H_{2}O(2) + Me_{3}SiCl(20)$	1	86	8.7:1

Table 1. Effect of combined catalyst (InCl₃-Me₃SiCl) on Ferrier rearrangement in per-O-acetyl-D-glucal

^a Isolated chromatographed yields. ^b by ¹H-NMR.

Accordingly, per-O-acetyl-D-glucal (1a) reacted with allyltrimethylsilane in the presence of 2 mol% InCl₃ and 20 mol% Me₃SiCl at room temperature, in dichloromethane in the presence of molecular sieves within 1 hour affording the corresponding allyl C-glucoside in 90 % yield and 9:1 α -anomeric selectivity (entry 1, Table 2).

Similarly, per-O-acetyl-D-galactal (1b), -L-rhamnal (1c) and –D-arabinal (1d) also were converted efficiently to their respective C-pseudoglycals in excellent yields with nearly exclusive α -anomeric selectivities (entries 5-7, Table 2). The mild reaction condition was amicable towards benzyl and benzoyl protections also. Thus, the yields and α -anomeric selectivities of both allyl per-O-benzyl- and per-O-benzoyl-C-pseudoglucals (2e and 2f) were equally excellent under similar reaction conditions (entries 8 and 9, Table 2). Per-O-benzoyl-D-glucal (1f), however, needed the presence of 5 mol% InCl₃ and 20 mol% Me₃SiCl for efficient conversion to the product. The efficacy of the combination catalyst system was further extended in the effective transformation of per-O-acetyl-D-lactal (1g) to its corresponding allyl C-pseudo lactal (2g) in nearly quantitative yield and exclusive α -selectivity (entry 10, Table 2). Other silyl nucleophiles, such as, trimethylsilyl cyanide and triethylsilane were also employed in such reactions in the presence of this catalyst system with the generation of the corresponding C-glycosyl cyanides (entries 11-13, Table 2) and unsaturated pyran derivatives (entries 14 and 15, Table 2) with equal efficacy. However, the anomeric selectivities of glycosyl cyanides were lower than those of the allyl C-pseudoglycals.

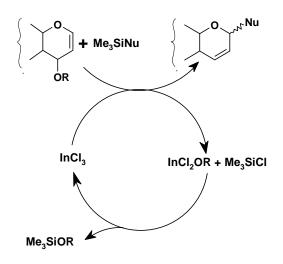

Entry	Substrate	Nucleophile/Time	Product	% Yield ^f / α/β^{g}	Ref
1	AcO" OAc 1a	Me ₃ SiAll / 1h (1.2 equiv.)	AcO"" 2a	90 / 9:1	6d
2	1a	"/ 5min	2a ^a	95 / 9:1	
3	1a	" /1h	2a ^b	92 / 9:1	
4	1a	" /1h	2a ^C _{QAc}	92 / 9:1	
5	Aco 1b	" / 3h		91 / α only	6f,i
6		"/ 2h		93 / 12:1	6f
7	Acd ¹	" / 1h	Acd ¹ 2d ^d	87 / 12:1	6f
8	OAc OBn Bn O ^m 1e	" / 3h	Bro ^{OBn} 2e	89 / 13:2	6i
9	BZO"" OBn BZO" If	" / 3.5h	οBz BzO [#] All PAc	94 / 7:1	6i,7b
10	Aco OAc OAc	1g " / 1h	Aco OAc OAc OAc OAc OAc OAc	93 / $lpha$ only	6j
11	0Ac 1a	Me ₃ SiCN / 1h (1.5 equiv.)	Act ^{or} 3a	90 / 11:5 ^h	6i,j
12	1b	" / 3h	Aco Sb	90 / 10:3 ^h	6i,j
13	1c	" / 1h	Aco Sc	94 / 7:5 ^h	6j
14	1a	Et ₃ SiH / 4h (1.2 equiv.)	Aco ^{rr} 4a ^d	90	6k
15	1b	"/4h	Aco 4bd	95	6k

Table 2. 2 mol% $InCl_3$ and 20 mol% Me₃SiCl catalysed Ferrier rearrangement of glycal derivatives with silyl nucleophiles

^a neat. ^b with recovered InCl₃. ^c scale up with 0.6g **1a**. ^d reaction mixture was stirred at 20-25°. ^e in the presence of 5 mol% InCl₃- 20 mol% Me₃SiCl. ^f isolated chromatographed yields. ^g anomeric ratios were determined by ¹H-NMR. ^h based on the isolated yields of anomers.

The present catalyst system is equally effective in solvent free condition. Thus, **1a** reacted in neat with allyltrimethylsilane in the presence of 2 mol% InCl₃ and 20 mol% Me₃SiCl forming **2a** within 5 minutes with equal efficacy (entry 2, Table 2). InCl₃ can be recovered and reused without any loss of its activity after the reaction (entry 3, Table 2). A similar efficiency of the catalyst system was observed in a scaled up experiment (6 fold) of **1a** that also produced **2a** in 92% yield and 9:1 α selectivity (entry 4, Table 2).

A plausible catalytic cycle of the reaction for regeneration of InCl₃ may be depicted as shown in Scheme 2. In this combination catalyst system, Me₃SiCl probably assists in the regeneration of InCl₃ from the InCl₂OR intermediates.

Scheme 2. Plausible catalytic cycle for regeneration of InCl₃.

In conclusion, we have demonstrated that InCl₃ in combination with Me₃SiCl acts as an efficient catalyst system for stereoselective C-glycosylation of glycal derivatives. The advantages of the present method are: its operational simplicity, low catalyst load, excellent yields, excellent stereoselectivities with allyl C-pseudoglycals and the reusability of the recovered InCl₃ retaining its complete activity. The present methodology, thus constitutes an important addition and may gainfully substitute some of the existing procedures.

Experimental Section

General Procedures. All melting points are uncorrected. All known compounds were characterized by IR, NMR and by comparing their physical data with those in the literature. IR spectra were recorded on Perkin Elmer 297 spectrophotometer. ¹H-NMR spectra were recorded on Bruker DPX-300 (300 MHz) spectrometer using CDCl₃ as solvent and TMS as the internal standard. Optical rotations were measured on Perkin Elmer electronic polarimeter 241 or on Jasco digital polarimeter model P-1020.

General experimental conditions for preparation of C-pseudoglycals: (a) In solvent

To a solution of glycal derivative (1 equiv.) in dry CH_2Cl_2 (3 ml) were added R_3SiNu (1.2-1.5 equiv.) and activated molecular sieves 4Å (~300 mg) under nitrogen. Finally Me_3SiCl (20 mol%) and InCl₃ (2 mol%) were added to the reaction mixture at 0°C and it was stirred at room temperature (30-32°C) till completion (checked by TLC, EtOAc-pet. ether). Then the mixture was filtered through celite bed, the bed was washed well with CH_2Cl_2 and the combine filtrate and washings (20 ml) were washed subsequently with NaHCO₃ (20 ml) and H₂O (2 x 15 ml). The organic layer was dried over anhydrous Na₂SO₄, concentrated under reduced pressure and the crude residue was purified on silica-gel (60-120 mesh) column with EtOAc-pet. ether (60-80°).

(b) Typical procedure in solvent free condition. To a mixture of per-O-acetyl-D-glucal (100 mg, 0.37 m mol) and Me₃SiAll (0.07 ml, 0.44 m mol) was added Me₃SiCl (0.01 ml, 20 mol%) and InCl₃ (1.6 mg, 2 mol%) at 0°C and the mixture was stirred for 5 minutes at room temperature. After completion the mixture was diluted with CH₂Cl₂ and washed subsequently with NaHCO₃ (20 ml) and water (2 x 15 ml). The organic layer was dried over anhydrous Na₂SO₄, concentrated under reduced pressure and finally purified by column chromatography on silica gel (5% EtOAc-pet. ether) affording pure **2a** as syrup (88.6 mg, 95%, α/β 9:1).

Physical and spectroscopic data of products

2a. Elution of the product with 5% EtOAc-pet. ether; α -anomer: syrup, $[\alpha]_D^{26}$ +66.2 (c 1, CHCl₃); IR (neat) v_{max} 3080, 2940, 1745, 1640, 1430, 1360, 1230, 1035, 905, 720 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 2.09 (s, 6H), 2.28-2.37 (m, 1H), 2.42-2.50 (m, 1H), 3.94-3.99 (dt, *J* 6.5 and 3.5 Hz, 1H), 4.13-4.18 (dd, *J* 11.8 and 3.5 Hz, 1H), 4.21-4.32 (m, 2H), 5.10-5.18 (m, 3H), 5.77-5.96 (m, 3H).

2b. Elution of the product with 5% EtOAc-pet. ether; α -anomer: syrup, $[\alpha]_D^{26}$ –267 (c 1.2, CHCl₃); IR (neat) ν_{max} 3080, 2940, 1740, 1640, 1435, 1370, 1230, 1050, 920, 840, 750 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 2.07 (s, 3H), 2.08 (s, 3H), 2.27-2.34 (m, 1H), 2.39-2.49 (m, 1H), 4.11-4.16 (m, 1H), 4.18-4.22 (m, 2H), 4.34-4.38 (m, 1H), 5.07-5.09 (dd, *J* 2.4 and 4.8 Hz, 1H), 5.11 (bs, 1H), 5.13-5.18 (m, 1H), 5.78-5.92 (m, 1H), 5.96-6.01 (ddd, *J* 1.8, 4.8 and 10.3 Hz, 1H), 6.04-6.08 (dd, *J* 2.8 and 10.3 Hz, 1H).

2c. Elution of the product with 2% EtOAc-pet. ether; α -anomer: syrup, $[\alpha]_D^{26}$ –92.03 (c 1.5, CHCl₃); IR (neat) ν_{max} 3070, 3040, 2980, 2940, 1740, 1640, 1440, 1370, 1230, 1190, 1130, 1095, 1030, 910, 720 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 1.23-1.25 (d, *J* 6.5 Hz, 3H), 2.09 (s, 3H), 2.29-2.36 (m, 1H), 2.40-2.45 (m, 1H), 3.89-3.97 (m, 1H), 4.17-4.24 (m, 1H), 4.87-4.90 (m, 1H), 5.09-5.17 (m, 2H), 5.72-5.96 (m, 3H).

2d. Elution of the product with 2% EtOAc-pet. ether; α -anomer: syrup, $[\alpha]_{578}^{25}$ +152.3 (c 0.24, CHCl₃); IR (neat) v_{max} 3080, 3040, 2980, 2940, 2860, 1735, 1640, 1430, 1370, 1230, 1095, 1030, 915, 820, 775, 720 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 2.07 (s, 3H), 2.24-2.40 (m, 2H), 3.51-3.57 (dd, *J* 6.9 and 11.4 Hz, 1H), 4.10-4.15 (dd, J 5.0 and 11.4 Hz, 1H), 4.16-4.22 (m, 1H), 5.09-5.16 (m, 2H), 5.23-5.28 (m, 1H), 5.76-5.94 (m, 3H).

2e. Elution of the product with 4% EtOAc-pet. ether; α -anomer: syrup, $[\alpha]_D^{26}+38.6$ (c 0.9, CHCl₃); IR (neat) ν_{max} 3060, 3030, 1640, 1495, 1450, 1390, 1365, 1305, 1205, 1090, 915, 735, 700 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 2.26-2.35 (m, 1H), 2.44-2.51 (m, 1H), 3.66-3.68 (m, 2H), 3.80-3.85 (m, 1H), 3.98-4.00 (m, 1H), 4.22-4.27 (m, 1H), 4.43-4.66 (m, 4H), 5.06-5.13 (m, 2H), 5.79-5.95 (m, 3H), 7.26-7.35 (m, 10H).

2f. Elution of the product with 3% EtOAc-pet. ether; α -anomer: white crystals, mp. 78-79°C (EtOAc : pet. ether 60-80); $[\alpha]_D^{26}$ +90.8 (c 0.65, CHCl₃); IR (KBr) v_{max} 3070, 2950, 2880, 1750, 1640, 1600, 1580, 1490, 1450, 1375, 1330, 1310, 1265, 1170, 1100, 1065, 1045, 1025, 990, 810, 710 cm⁻¹; ¹H NMR (300MHz, CDCl₃): δ 2.35-2.44 (m, 1H), 2.49-2.59 (m, 1H), 4.28-4.33 (m, 1H), 4.36-4.41 (m, 1H), 4.49-4.52 (m, 2H), 5.06-5.10 (m, 1H), 5.11-5.17 (dd, J 1.59 and 17.1 Hz, 1H), 5.47-5.49 (m, 1H), 5.97-6.00 (m, 3H), 7.38-7.46 (m, 4H), 7.52-7.57 (m, 2H), 8.02-8.07 (m, 4H).

2g. Elution of the product with 25% EtOAc-pet. ether; α -anomer: syrup, $[\alpha]_{578}^{25}+24.1$ (c 0.65, CHCl₃); IR (neat) v_{max} 3080, 2980, 2940, 2890, 1750, 1640, 1430, 1365, 1250-1220, 1165, 1080-1040, 915, 740 cm⁻¹; ¹H NMR (300MHz, CDCl₃): δ 1.98 (s, 3H), 2.06 (s, 3H), 2.08 (s, 3H), 2.10 (s, 3H), 2.15 (s, 3H), 2.24-2.33 (m, 1H), 2.41- 2.51 (m, 1H), 3.80-3.85 (m, 1H), 3.91-3.95 (t, *J* 6.6 Hz, 1H), 4.02-4.06 (dd, *J* 1.4 and 8 Hz, 1H), 4.09-4.25 (m, 5H), 4.58-4.60 (d, *J* 8 Hz, 1H), 4.99-5.04 (dd, *J* 3.4 and 10.4 Hz, 1H), 5.09-5.14 (m, 2H), 5.20-5.30 (m, 1H), 5.39-5.40 (d, *J* 3.2 Hz, 1H), 5.76-5.90 (m, 2H), 5.95-5.99 (d, *J* 10.5, 1H).

3a. Elution of the product with 15% EtOAc-pet. ether; α -anomer: white needles, mp. 88-89°C (EtOAc : pet. ether, 60-80); $[\alpha]_D^{28.2}$ –11.94 (c 0.82, CHCl₃); IR (KBr) ν_{max} 3010, 2970, 2940, 2900, 1745, 1440, 1415, 1375, 1215, 1140, 1095, 1045, 980, 905, 830, 720, 670, 650, 610 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 2.11 (s, 3H), 2.12 (s, 3H), 4.01-4.07 (m, 1H), 4.26-4.27 (d, *J* 3.9 Hz, 2H), 5.06-5.09 (m, 1H), 5.32-5.37 (m, 1H), 5.87-5.92 (m, 1H), 6.01-6.06 (m, 1H).

3b. Elution of the product with 17% EtOAc-pet. ether; α -anomer: white needles, mp. 120°C (EtOAc : pet. ether 60-80); $[\alpha]_{578}^{24}$ –385.9 (c 0.44, CHCl₃); IR (KBr) ν_{max} 2940, 1735, 1380, 1365, 1240, 1090, 1050-1020, 910, 840 cm⁻¹; ¹H NMR (300MHz, CDCl₃, CDCl₃): δ 2.09 (s, 3H), 2.10 (s, 3H), 4.22-4.25 (m, 3H), 5.14-5.18 (m, 2H), 6.05-6.09 (dd, J 3.7 and 9.9 Hz, 1H), 6.25-6.30 (ddd, J 1.9, 5.5 and 9.9 Hz, 1H).

3c. Elution of the product with 3% EtOAc- pet. ether; α -anomer: white needles, mp. 65 °C (Et₂O-pet.ether, 40-60⁰); $[\alpha]_D^{26}$ –306.8 (c 0.34, CHCl₃); IR (neat) v_{max} 2980, 2930, 1735, 1440, 1370, 1230, 1195, 1130, 1100, 1030, 920, 800 cm⁻¹; ¹H NMR (300MHz, CDCl₃): δ 1.34 (d, J 6.3 Hz, 3H), 2.09 (s, 3H), 3.74 (q, J 6.5 Hz, 1H), 5.08 (bs, 1H), 5.90 (d, J 10.3 Hz, 1H), 6.01 (d, J 10.1 Hz, 1H);

4a. Elution of the product with 8% EtOAc-pet. ether; syrup, $[\alpha]_{578}^{24}$ +89.7 (c 0.78, CHCl₃); IR (neat) v_{max} 3040, 2940, 2815, 1740, 1445, 1445, 1370, 1230, 1030-1050, 965, 905, 815, 750 cm⁻¹; ¹H NMR (300MHz, CDCl₃): δ 2.09 (s, 3H), 2.11 (s, 3H), 3.71-3.76 (m, 1H), 4.15-4.26 (m, 4H), 5.24-5.29 (m, 1H), 5.74-5.80 (m, 1H), 5.92-5.98 (m, 1H).

4b. Elution of the product with 10% EtOAc-pet. ether; syrup, $[\alpha]_{578}^{24}$ –321.36 (c 0.76, CHCl₃); IR (neat) v_{max} 3040, 2840, 2720, 1735, 1440, 1365, 1220-1245, 1185, 1090, 1045, 1015, 950, 905, 830, 810, 730 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 2.09 (s, 6H), 3.86-3.91(m, 1H), 4.15-4.19 (m, 1H), 4.22-4.27 (m, 2H), 4.31-4.38 (m, 1H), 5.09-5.13 (m, 1H), 5.98-6.04 (m, 1H), 6.08-6.13 (m, 1H).

Acknowledgements

Financial assistances from CSIR, New Delhi (Scheme No. 01/1672/00/EMR-II) to RG and SM (JRF) and from UGC, New Delhi to AC (SRF) are gratefully acknowledged. Thanks are also extended to Professor A. Patra, University of Calcutta, India for his generous help in recording optical rotations.

References

- 1. (a) Lewis, M. D.; Cha, J. K.; Kishi, Y, J. Am. Chem. Soc. **1982**, 104, 4976. (b) Paterson, L.; Keown, L. E. Tetrahedron Lett. **1997**, 38, 5727.
- (a) Weatherman, R. V.; Mortell, K. H.; Chervenak, M.; Kiessling, L. L.; Tonne, E. J. Biochemistry 1996, 35, 3619. (b) Sutherlin, D. P.; Stark, T. M.; Hughes, R.; Armstrong, R. W. J. Org. Chem. 1996, 61, 8350.
- 3. Takhi, M.; Abdel Rahman, A. -H.; Schmidt, R. R. Tetrahedron Lett. 2001, 42, 4053.
- (a) Hanessian, S. Total Synthesis of Natural Products: The Chiron Approach; Pergamon Press: Oxford, 1984. (b) Nicolaou, K. C.; Dugan, M. E.; Hwang, C. K.; Somers, P. K.; J. Chem. Soc., Chem. Comm. 1985, 1359. (c) Wincott, F. E.; Danishefsky, S. J.; Schutte, G. Tetrahedron Lett. 1987, 28, 4951.
- 5. Ferrier, R. J.; Prasad, N. J. Chem. Soc. C 1969, 570.
- (a) Danishefsky, S. J.; Keerwin, J. F. J. Org. Chem. 1982, 47, 3803. (b) Grynkiewicz, G.; BeMiller, J. N. J. Carbohydr. Chem. 1982, 1, 121. (c) Dawe, R. D.; Fraser-Reid, B. J. Chem. Soc., Chem. Comm. 1981, 1180. (d) Marco-Contelles, J. L.; Fernandez, C.; Gomez, A.; Martin-Leon, N.; Tetrahedron Lett. 1990, 31, 1467. (e) Toshima, K.; Miyamito, N.; Matsuo, G.; Nakata, M.; Matsumura, S. J. Chem. Soc., Chem. Comm. 1996, 1379. (f) Ghosh, R.; De, D.; Shown, B.; Maiti, S. B. Carbohydr. Res. 1999, 321, 1. (g) Yadav, J. S.; Subba Reddy, B. V.; Chandraiah, L.; Reddy, K. S.; Carbohydr. Res. 2001, 332, 221. (h) Yadav, J. S.; Subba Reddy, B. V.; Chand, P. K. Tetrahedron Lett. 2001, 42, 4057. (i) Yadav, J. S.; Reddy, B. V. S. Synthesis 2002, 511. (j) Ghosh, R.; Chakraborty, A.; Maiti, D. K. Synth. Comm. 2003, 33, 1623. (k) Das, S. K.; Reddy, K. A.; Abbineni, C.; Roy, J.; Rao, K. V. L. N.; Sachwani, R. H.; Iqbal, J. Tetrahedron Lett. 2003, 44, 4507.

- (a) Toshima, K.; Ishizuka, T.; Matsuo, G.; Nakata, M. *Chem. Lett.* **1993**, 2013. (b) Yadav, J.
 S.; Subba Reddy, B. V.; Rao, C. V.; Chand, P. K.; Prasad, A. R. *Synlett* **2001**, 1638.
- 8. Onishi, Y.; Ito, T.; Yasuda, M.; Baba, A. *Tetrahedron* **2002**, *58*, 8227.