The Effenberger's synthesis of 3,3'-bipyrazole revisited

Virginie Vicente, ${ }^{* a}$ Alain Fruchier, ${ }^{a}$ and José Elguero ${ }^{b}$
${ }^{a}$ UMR 5076, E.N.S.C.M., 8 rue de l'Ecole Normale, F-34296 Montpellier Cedex 5, France, and
${ }^{b}$ Centro de Química Orgánica 'Manuel Lora-Tamayo', Juan de la Cierva 3, E-28006 Madrid, Spain

Dedicated to Professor Mieczyslaw Makosza on his 70 ${ }^{\text {th }}$ anniversary
(received 19 May 03; accepted 14 Aug 03; published on the web 11 Sept 03)

Abstract

When 1,4-bis-ethoxymethylen-2,3-butanedione 2 reacts with hydrazine, following a slightly modified Effenberger's procedure, other compounds than the expected 3,5'-bipyrazole 1 are obtained. This paper describes the isolation, besides 1, of two pyridazinones and one 6H-6,7-dihydropyrazolo[1,5-d]-1,2,4-triazine and the determination of their structure by mass spectrometry and by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR.

Keywords: Effenberger's procedure, bipyrazoles, pyridazinones, pyrazolotriazines

Introduction

There are six derivatives of bipyrazole $\mathbf{1}$ which differ from the position of the $\mathrm{C}-\mathrm{C}$ bond between the two pyrazole rings (Scheme 1).

Scheme 1

All of these compounds, except the 4,4'-derivative, exist separately when they are N -
substituted, but the NH forms represented in Scheme 1 are subject to annular tautomerism. ${ }^{1}$ All of them have been prepared: the family of $3,3^{\prime}-$, $3,5^{\prime}$ - and $5,5^{\prime}$ - derivatives by many authors, generally with substituents on the carbon atoms, ${ }^{2-12}$ the $3,4^{\prime}-\left(4,5^{\prime}-\right)$ family less frequently ${ }^{6,13,14}$ and, finally, 4,4'-bipyrazoles being again quite common. ${ }^{6,15-22}$ The parent compounds are described for 3,3'-bipyrazole ${ }^{2,7,11}$ and 4,4'-bipyrazole ${ }^{16,18-20}$ but that of 3,4'-bipyrazole has not been prepared yet. All of these compounds have important uses in coordination chemistry as polydentate ligands.

3,3'-Bipyrazole 1 (3,3') has been reported three times. Effenberger ${ }^{2}$ prepared it from 1,4-bis-ethoxymethylenbutane-2,3-dione 2 and hydrazine with a yield of 75% (60% after crystallization) and a m.p. of $257{ }^{\circ} \mathrm{C}$. Then Wille and Schwab ${ }^{7}$ obtained 1 from 1,1,6,6-tetraethoxy-2,4hexadiyne and hydrazide hydrochloride with a yield of 34% and reported its ${ }^{1} \mathrm{H}$ NMR spectrum in DMSO- d_{6} but not its melting point. Finally, some of us prepared again $\mathbf{1}$ using the Effenberger's procedure, determined its X-ray structure and discussed its tautomerism in solution. ${ }^{11}$ We should note that Habraken et al. ${ }^{6}$ prepared the three bis- N-methyl derivatives of $\mathbf{1}$ (3,3'-, 3,5'- and 5,5'-) using the method of Effenberger with methylhydrazine instead of hydrazine, the total yield being between 25 and 34%. Since we needed compound $\mathbf{1}$ for synthesizing new ligands, we decided to prepare it again.

Results and Discussion

Effenberger's synthesis of hydrazine is reported like this: ${ }^{2}$ First, free hydrazine was prepared adding sodium methoxide in methanol (1.84 g of sodium, 80 mmol , in 40 mL of anhydrous methanol) to 4.2 g (40 mmol) of hydrazonium dichloride in 10 mL of anhydrous methanol. Sodium chloride was filtered off and the methanolic hydrazine solution was cooled down to $-10{ }^{\circ} \mathrm{C}$ and 1.98 g (10 mmol) of 1,4-bis-ethoxymethylen-butane-2,3-dione 2 in 20 mL of anhydrous ether was added. The solution was kept at $-10{ }^{\circ} \mathrm{C}$ for $\mathbf{2 4} \mathrm{h}$. Compound 1 precipitates: 1.0 g (75% yield), m.p. $257^{\circ} \mathrm{C}$. Crystallized from ethanol, 0.8 g (60% yield), pure 1 m.p. $261^{\circ} \mathrm{C}$.

Following exactly this procedure, an identical result was obtained, but if instead of keeping the solution at $-10^{\circ} \mathrm{C}$ for 24 h , the solution was abandoned at room temperature (in our case $21{ }^{\circ} \mathrm{C}$), then nothing precipitates. The solution was evaporated to dryness and a orange solid was obtained. A ${ }^{1} \mathrm{H}$ NMR of the crude in DMSO- d_{6} shows that it is a $55-30-15 \%$ mixture of three compounds (A-B-C). When the crude was dissolved in acetone and evaporated, compound \mathbf{B} (30\%) disappeared and two new compounds \mathbf{D} and \mathbf{E}, in comparable proportions, were formed, the first one evolving on standing to \mathbf{E}. These compounds were isolated by flash chromatography, but \mathbf{B} proved too unstable to be fully characterized. We have determined the structure of all these compounds by a combination of mass spectrometry and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR: A is $\mathbf{3}, \mathbf{B}$ is probably $\mathbf{4}, \mathbf{C}$ is the desired $\mathbf{1}, \mathbf{D}$ is $\mathbf{5}$ and \mathbf{E} is $\mathbf{6}$ (see Scheme 2).

We have found another procedure to prepare $\mathbf{1}$ which uses hydrazine hydrate: 40.0 mmol of hydrazine hydrate in 12 mL of THF were added to 20.0 mmol of diketone 2 and a few grains of p-toluenesulfonic acid in 20 mL of anhydrous THF. The mixture was left under stirring for $\mathbf{2 4} \mathbf{h}$
at room temperature and then filtered off. The insoluble solid was washed with THF and dried under vacuum. Bipyrazole $\mathbf{1}$ was obtained with a yield of 75% (note that once in the solid state, $\mathbf{1}$ is a very insoluble compound).

The different compounds and their numbering are reported in Scheme 2. Postulated intermediaries are in brackets; compound $\mathbf{4}$ has no numbering system because no NMR spectrum could be obtained.

2

3, $\mathrm{R}=\mathrm{CH}_{3}$
7, $\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}$

Scheme 2

Identification of the diferent compounds. Compound 1 (m.p. 258-260 ${ }^{\circ} \mathrm{C}$) was identified by comparison with an authentic sample. ${ }^{11}{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 12.97$ (broad s, NH); 7.66 (broad s, H-5); 6.54 (d, ${ }^{3} J=2.1 \mathrm{~Hz}, \mathrm{H}-4$). ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}+1$ drop of $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$): $\delta 141.41$ (C-5); 133.26 (C-3); 102.69 (C-4).

Compound 3 ($\mathrm{R}=\mathrm{CH}_{3}$, m.p. 114-115 ${ }^{\circ} \mathrm{C}$). HRMS m/z $198.1019\left(\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}\right)$ requires 198.1004. NMR $\left(\mathrm{CDCl}_{3}\right):{ }^{1} \mathrm{H} \delta 6.52\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, \mathrm{H}-5\right), 7.97\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, \mathrm{H}-6\right), 3.14\left(\mathrm{~d},{ }^{3} \mathrm{~J}\right.$ $=5.8 \mathrm{~Hz}$ with $\mathrm{H}-2^{\prime}, \mathrm{H}_{\mathrm{a}}$ and H_{b} on $\left.\mathrm{C}-1^{\prime}\right), 5.09\left(\mathrm{t}^{3}{ }^{3}=5.8 \mathrm{~Hz}\right.$ with H_{a} and H_{b} on $\left.\mathrm{C}-1^{\prime}, \mathrm{H}^{\prime} \mathbf{2}^{\prime}\right), 3.38$ (s, $\mathrm{CH}_{3} \mathrm{O}$ on $\mathrm{C}-2^{\prime}$), $3.73\left(\underline{\mathrm{AB}}_{3},{ }^{2} J_{\text {gem }}=-9.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}\right.$ with CH_{3} on C-4', H_{b} on C-4'), $\left.3.59\left(\underline{\mathrm{ABX}}_{3},{ }^{2} J_{\text {gem }}=-9.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz} \text { with } \mathrm{CH}_{3} \text { on } \mathrm{C}-4{ }^{\prime}, \mathrm{H}_{\mathrm{a}} \text { on } \mathrm{C}-4\right)^{\prime}\right), 1.20\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}\right.$ with H_{a} and H_{b} on $\mathrm{C}-4$ ', CH_{3} on $\mathrm{C}-4$ '). ${ }^{13} \mathrm{C} \delta 157.01(\mathrm{C}-3), 171.57(\mathrm{C}-4), 114.25(\mathrm{C}-5), 139.81$ (C-6), 34.89 ($\mathrm{C}-1$ '), 100.78 (C-2'), $52.96\left(\mathrm{CH}_{3} \mathrm{O}\right.$ on $\left.\mathrm{C}-2^{\prime}\right), 61.72(\mathrm{C}-4 '), 15.18\left(\mathrm{CH}_{3}\right.$ on $\left.\mathrm{C}-4{ }^{\prime}\right)$. Note that in compound $3, \mathrm{H}_{\mathrm{a}}$ and H_{b} on $\mathrm{C}-1$ ' are diastereotopic but accidentally isochronous at 250 MHz .

Compound 7 ($\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}$, m.p. 119-120 ${ }^{\circ} \mathrm{C}$). HRMS m/z $212.1140\left(\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}\right)$ requires 212.1161. NMR $\left(\mathrm{CDCl}_{3}\right):{ }^{1} \mathrm{H} \delta 6.51\left(\mathrm{~d},{ }^{3} J=7.4 \mathrm{~Hz}, \mathrm{H}-5\right), 7.98\left(\mathrm{~d},{ }^{3} J=7.4 \mathrm{~Hz}, \mathrm{H}-6\right), 3.13\left(\mathrm{~d},{ }^{3} J\right.$ $=5.9 \mathrm{~Hz}$ with $\mathrm{H}-2^{\prime}, \mathrm{H}_{\mathrm{a}}$ and H_{b} on $\mathrm{C}-1$ '), $5.137\left(\mathrm{t},{ }^{3} \mathrm{~J}=5.9 \mathrm{~Hz}\right.$ with H_{a} and H_{b} on $\left.\mathrm{C}-1^{\prime}, \mathrm{H}^{\prime}-2^{\prime}\right), 3.72$ $\left(\underline{\mathrm{ABX}}_{3},{ }^{2} J_{\text {gem }}=-9.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}\right.$ with CH_{3} on $\mathrm{C}-4{ }^{\prime}, \mathrm{H}_{\mathrm{b}}$ on $\left.\mathrm{C}-4 '\right), 3.56\left(\mathrm{ABX}_{3},{ }^{2} J_{\mathrm{gem}}=-9.5\right.$ $\mathrm{Hz},{ }^{3} J=7.1 \mathrm{~Hz}$ with CH_{3} on $\mathrm{C}-4{ }^{\prime}, \mathrm{H}_{\mathrm{a}}$ on C-4'), $1.16\left(\mathrm{t},{ }^{3} J=7.1 \mathrm{~Hz}\right.$ with H_{a} and H_{b} on $\mathrm{C}-4{ }^{\prime}, \mathrm{CH}_{3}$ on $\mathrm{C}-4$ '). ${ }^{13} \mathrm{C} \delta 156.79$ (C-3), 171.52 (C-4), 113.99 (C-5), 140.29 (C-6), 35.41 (C-1'), 100.04 (C$\left.2^{\prime}\right), 61.38(\mathrm{C}-4 '), 15.07\left(\mathrm{CH}_{3}\right.$ on $\mathrm{C}-4$ '). Note that in compound 7 the two OEt group on $\mathrm{C}-2$ ' are enantiotopic just as H_{a} and H_{b} on $\mathrm{C}-1^{\prime}$, but that H_{a} and H_{b} on each OEt group are diastereotopic.

Compound 4 was not isolated, only a GC/MS spectrum was obtained, $213 \mathrm{Da}[\mathrm{M}+\mathrm{H}]^{+}$, calculated for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}, \mathrm{~m} / \mathrm{z}=212.1 \mathrm{Da}$.

Compound 5 (oil). HRMS m/z $252.1579\left(\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}\right)$ requires 252.1586. NMR $\left(\mathrm{CDCl}_{3}\right)$: ${ }^{1} \mathrm{H} \delta 6.66\left(\mathrm{~d},{ }^{3} \mathrm{~J}=2.1 \mathrm{~Hz}, \mathrm{H}-4\right), 7.535\left(\mathrm{~d},{ }^{3} \mathrm{~J}=2.1 \mathrm{~Hz}, \mathrm{H}-3\right), 1.90$ and $\left.2.05\left(\mathrm{CH}_{3} \text { groups on } \mathrm{C}-5\right)^{\prime}\right)$, 3.27 (s, $\mathrm{CH}_{3} \mathrm{O}$ on $\mathrm{C}-3$ '), $3.159\left(\mathrm{~m},{ }^{2} J_{\text {gem }}=-12.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=5.7 \mathrm{~Hz}\right.$ with $\left.\mathrm{H}-3{ }^{\prime}, \mathrm{H}_{\mathrm{a}}\right), 3.11(\underline{\mathrm{ABX}}$, ${ }^{2} J_{\text {gem }}=-12.7 \mathrm{~Hz},{ }^{3} J=5.7 \mathrm{~Hz}$ with H-3', $\left.\mathrm{H}_{\mathrm{b}}\right), 4.76\left(\mathrm{t},{ }^{3} J=5.7 \mathrm{~Hz}\right.$ with H_{a} and H_{b} on C-2', H-3'), $3.62\left(\mathrm{ABX}_{3},{ }^{2} J_{\text {gem }}=-9.4 \mathrm{~Hz},{ }^{3} J=7.0 \mathrm{~Hz}\right.$ with CH_{3} on C-4', $\left.\mathrm{H}_{\mathrm{b}}\right), 3.43\left(\mathrm{ABX}_{3},{ }^{2} J_{\text {gem }}=-9.4 \mathrm{~Hz}\right.$, ${ }^{3} J=7.0 \mathrm{~Hz}$ with CH_{3} on $\mathrm{C}-4$ ', H_{a}), $1.09\left(\mathrm{t},{ }^{3} J=7.0 \mathrm{~Hz}\right.$ with H_{a} and H_{b} on $\mathrm{C}-4$, CH_{3} on $\mathrm{C}-4$ '). ${ }^{13} \mathrm{C} \delta 145.44(\mathrm{C}-5), 105.14(\mathrm{C}-4), 135.23(\mathrm{C}-3), 151.36\left(\mathrm{C}-1\right.$ '), $33.83\left(\mathrm{C}-2^{\prime}\right), 101.55(\mathrm{C}-3$ '), 62.13 (C-4'), $53.41\left(\mathrm{CH}_{3} \mathrm{O}\right.$ on $\mathrm{C}-3$ '), $15.00\left(\mathrm{CH}_{3}\right.$ on $\left.\mathrm{C}-4 '\right), 162.43\left(\mathrm{C}-5^{\prime}\right), 25.02$ and $18.59\left(\mathrm{CH}_{3}\right.$ groups on C-5').

Compound 6, $6 \mathrm{H}-6,7$-dihydropyrazolo[1,5-d]-1,2,4-triazine, m.p. $132-134{ }^{\circ} \mathrm{C}$. HRMS m/z 252.1618 $\left(\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}\right)$ requires 252.1586. NMR $\left(\mathrm{CDCl}_{3}\right):{ }^{1} \mathrm{H} \delta 7.52\left(\mathrm{~d},{ }^{3} J=2.1 \mathrm{~Hz}, \mathrm{H}-2\right), 6.35$ (d, ${ }^{3} J=2.1 \mathrm{~Hz}, \mathrm{H}-3$), $2.88\left(\mathrm{~d},{ }^{3} J=6.0 \mathrm{~Hz}\right.$ with $\mathrm{H}-5^{\prime}, \mathrm{H}_{\mathrm{a}}$ and H_{b} on $\left.\mathrm{C}-4 \mathrm{C}^{\prime}\right), 4.82\left(\mathrm{t},{ }^{3} J=6.0 \mathrm{~Hz}\right.$ with H_{a} and H_{b} on C-4'), $3.36\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{O}\right.$ on $\left.\mathrm{C}-5 '\right), 3.70\left(\mathrm{ABX}_{3},{ }^{2} \mathrm{~J}_{\mathrm{gem}}=-9.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}\right.$ with CH_{3} on C-6', H_{a} on C-6'), $3.52\left(\underline{\mathrm{ABX}}_{3},{ }^{2} J_{\text {gem }}=-9.4 \mathrm{~Hz},{ }^{3} J=7.1 \mathrm{~Hz}\right.$ with CH_{3} on C-6', H_{b} on C-6'), $1.18\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}\right.$ with H_{a} and H_{b} on $\mathrm{C}-6$ ', CH_{3} on $\mathrm{C}-6$ '). ${ }^{13} \mathrm{C} \delta 138.59(\mathrm{C}-2), 102.57(\mathrm{C}-3)$, 137.25 (C-3a), 130.53 (C-4), 71.54 (C-7), 24.31 (two CH_{3} groups on C-7), 37.04 (C-4'), 101.61 (C-5'), 61.51 (C-6'), $52.76\left(\mathrm{CH}_{3} \mathrm{O}\right.$ on $\mathrm{C}-5$ '), $15.01\left(\mathrm{CH}_{3}\right.$ on $\left.\mathrm{C}-6{ }^{\prime}\right) .{ }^{15} \mathrm{~N} \delta-88.53(\mathrm{~N}-1),-163.82$
(N-8), - 68.80 (N-5), -246.55 (N-6). Note that in compound 6, as in compound $3, \mathrm{H}_{\mathrm{a}}$ and H_{b} on C-1' are diastereotopic but accidentally isochronous at 250 MHz .
Mechanism. Scheme 2 is not a mechanistic one, but only a naive representation of the origin of the compounds in the different procedures described above as well as in other attempts. For instance, using an ethanolic solution of hydrazine hydrate and p-toluenesulfonic acid as catalyst, the reaction gave 50% of bipyrazole 1 and 50% of the pyridazin- 4 -one derivative 7 . This last compound is a proof of the attack of one double bond of the starting ketone by the solvent ROH. Actually, the diketone 2 behaves like a protected dialdehyde that reacts like a tetracarbonyl compound, that is, $\mathrm{OHC}-\mathrm{CH}_{2}-\mathrm{CO}-\mathrm{CO}-\mathrm{CH}_{2}-\mathrm{CHO}$. Reaction of the β-dicarbonyl part would lead to pyrazoles but reacting as a γ-dicarbonyl compound corresponds to the well-known synthesis of pyridazines. ${ }^{23,24}$
Tautomerism. The compounds described in this paper deserve some comments concerning their tautomerism. Compound 1 exists in solution as tautomer 3,5' (see Scheme 1). ${ }^{11}$ The pyridazine derivatives 3 and 7 exist in CDCl_{3} solution as oxo tautomers (pyridazinones), according to the signal of the C-4 (171.5 ppm). In the related case of 4-hydroxypyridine in equilibrium with 4pyridone, C-4 appears at 167.8 and $180.9 \mathrm{ppm}^{25}$ respectively, but these values have to be corrected by -8.6 ppm corresponding to the effect of the $\mathrm{N}-2$ atom. ${ }^{26}$ Thus, the predicted values are 159.2 ppm for the 4-hydroxypyridazine and 172.3 ppm for the 4-pyridazinone. This conclusion is consistent with other pyridazinones [see ref. 1, p. 122]. Finally, pyrazole 5 is probably a 5 -substituted tautomer because ${ }^{3} J_{\mathrm{HH}}=2.1 \mathrm{~Hz}$ like ${ }^{3} J_{\mathrm{H} 3-\mathrm{H} 4}$ in compound $\mathbf{6}$ and because 135.23 ppm corresponds to a C-3 signal. ${ }^{27}$ Note that 6 is a ring-chain isomer of 5 (a CDCl_{3} solution of 5 is found by ${ }^{1} \mathrm{H}$ NMR to evolve in 24 h to 100% of $\mathbf{6}$).

Experimental Section

General Procedures. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker Avance-250 spectrometer working at 250.130 for ${ }^{1} \mathrm{H}, 62.896$ for ${ }^{13} \mathrm{C}$ and 25.355 MHz for ${ }^{15} \mathrm{~N}$. Chemical shifts are expressed in ppm/TMS for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ and in ppm/external $\mathrm{NO}_{2} \mathrm{Me}$ for ${ }^{15} \mathrm{~N}$ spectra. Coupling constants are in Hertz. Solvent was CDCl_{3} unless stated otherwise. All the structures were determined by mass spectrometry and NMR spectroscopy. Signals of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were assigned with the help of HMQC and HMBC experiments. Assignments of signals of the ${ }^{15} \mathrm{~N}$ spectrum of compound 6 were made according to Gouesnard et al. ${ }^{28}$ and Claramunt et al. ${ }^{29}$ Non first-order spectra were calculated using NMRSIM 30 and gNMR 31 softwares affording chemical shifts with three decimal places. Exact masses were determined using electron impact technique and PFK as reference (VG AutoSpec), accuracy ± 0.0025 daltons.

References

1. Elguero, J.; Marzin, C.; Katritzky, A.R.; Linda, P. The Tautomerism of Heterocycles; Academic Press: New York, 1976.
${ }^{\circledR}$ ARKAT USA, Inc
2. Effenberger, F. Chem. Ber. 1965, 98, 2260.
3. Reimlinger, H.; Vandewalle, J.J.M.; van Overstraeten, A. Liebigs Ann. Chem. 1968, 720, 124.
4. Hill, J.H.M.; Berkowitz, D.M; Freese, K.J. J. Org. Chem. 1971, 36, 1563.
5. Ajello, A. J. Heterocyclic Chem. 1971, 8, 1035.
6. Timmermans, P.B.M.W.M.; Uijttewaal, A.P.; Habraken, C.L. J. Heterocyclic Chem. 1972, 9, 1373.
7. Wille, F.; Schwab, W. Monatsh. Chem. 1978, 109, 337.
8. Khan, M.A.; Freitas, A.C.C. Monatsh. Chem. 1981, 112, 675.
9. Lupo, B.; Tarrago, G. Bull. Soc. Chim. Fr., Ser. II 1984, 473.
10. Weinberg, P.; Csongár, C.; Tomaschewski, G. Z. Chem. 1988, 28, 445.
11. Monge, M.A.; Puebla, E.G.; Elguero, J.; Toiron, C.; Meutermans, W. Spectrochim. Acta 1994, 50A, 727.
12. Murakami, Y.; Yamamoto, T. Bull. Chem. Soc. Jap. 1999, 72, 1629.
13. Khan, M.A.; Cosenza, A.G. Afinidad 1988, 45, 173.
14. Arrieta, A.; Carrillo, J.R.; Cossío, F.P.; Díaz-Ortíz, A.; Gómez-Escalonilla, M.J.; de la Hoz, A.; Langa, F.; Moreno, A. Tetrahedron 1998, 54, 13167.
15. Mosby, W.L. J. Chem. Soc. 1957, 3997.
16. Trofimenko, S. J. Org. Chem. 1964, 29, 3046.
17. Freeman, J.P.; Hansen, J. F. J. Chem. Soc., Chem. Commun. 1972, 961.
18. Usón, R.; Oro, L.A.; Esteban, M.; Cuadro, A.M.; Navarro, P.; Elguero, J. Trans. Met. Chem. 1982, 7, 234.
19. Cuadro, A.M.; Elguero, J.; Navarro, P.; Royer, E.; Santos, A. Inorg. Chim. Acta 1984, 81, 99.
20. Boldog, I.; Rusanov, E.B.; Chernega, A.N.; Sieler, J.; Domasevich, K.V. Angew. Chem., Int. Ed. 2001, 40, 3425.
21. Boldog, I.; Rusanov, E.B.; Chernega, A.N.; Sieler, J.; Domasevich, K.V. J. Chem. Soc., Dalton Trans. 2001, 893.
22. Boldog, I.; Rusanov, E.B.; Chernega, A.N.; Sieler, J.; Domasevich, K.V. Polyhedron 2001, 20, 887.
23. Coates, W. J. Comprehensive Heterocyclic Chemistry II; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. Eds.; Pregamon: Oxford;1996, pp1-91.
24. Kolar, P.; Tisler, M. Adv. Heterocyclic Comp. 2000, 75, 167.
25. Murguly, E.; Norsten, T.B.; Branda, N. J. Chem. Soc., Perkin Trans. 2 1999, 2789.
26. Bretmaier, E.; Voelter, W. ${ }^{13}$ C NMR Spectroscopy; $2^{\text {nd }}$ Edition, Verlag Chemie: Weinheim, 1978, p 200.
27. Begtrup, M.; Boyer, G.; Cabildo, P.; Cativiela, C.; Claramunt, R.M.; Elguero, J; García, J.I.; Toiron, C.; Vedsø, P. Magn. Reson. Chem. 1993, 31, 107.
28. Gouesnard, J.P.; Martin, G.J. Org. Magn. Reson. 1979, 12, 263.
29. Claramunt, R.M.; Sanz, D.; López, C.; Jiménez, J.A.; Jimeno, M.L.; Elguero, J.; Fruchier, A. Magn. Reson. Chem. 1997, 35, 35.
30. NMRSIM 2.61 from Bruker Analytik GmbH.
31. gNMR 3.6 from Cherwell Scientific Publishing Ltd.
