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Abstract 
Vapor pressure is an important property which is an indicator of chemical volatility, along with 
transport, partitioning, fate and distribution of environmental pollutants.  Various models have 
been developed for the prediction of vapor pressure of chemicals using physicochemical and 
calculated structural properties.  We have used different classes of graph theoretic indices, e.g., 
topostructural indices, topochemical indices, geometrical (3D) indices and, quantum chemical 
descriptors, for the development of predictive models for vapor based on a structurally diverse 
set of 469 chemicals.  Initially, a set of 379 molecular descriptors was calculated using the 
software POLLY, Triplet, Sybyl, MOPAC, and Molconn-Z. Comparatively, three linear regression 
methodologies were used to develop hierarchical QSAR (HiQSAR) models, namely ridge 
regression (RR), principal components regression (PCR), and partial least squares (PLS) 
regression. The results indicate that, in general, RR outperforms PCR and PLS, and that the 
easily calculated topological descriptors are sufficient for the prediction of vapor pressure based 
on this large, diverse set of chemicals.  
 
Keywords: Hierarchical QSAR, ridge regression, principal components regression, partial least 
squares regression, topological indices, vapor pressure 

 
 
 
Introduction 
 
The assessment of fate and distribution of environmental pollutants in various phases including 
air, water, and soil is important for the risk assessment of chemicals.1  The partitioning of 
chemicals  among different phases is usually assessed using a critical list of physical properties 
including vapor pressure (VP), aqueous solubility, air: water partition coefficient, and octanol: 
water partition coefficient.   
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Pollutants with high vapor pressure tend to concentrate more in the vapor phase as compared 
to soil or water.  Therefore, VP is a key physicochemical property essential to the assessment of 
chemical distribution in the environment.  This property is also used in the design of various 
chemical engineering processes.2  Additionally, VP can be used for the estimation of other 
important physicochemical properties. For example, one can calculate Henry’s law constant, soil 
sorption coefficient, and partition coefficient from VP and aqueous solubility.   

Therefore, it is not surprising that various authors have attempted to model this important 
physicochemical property using quantitative structure-property relationships (QSPRs) based on 
calculated molecular descriptors.  Katritzky et al used descriptors calculated by CODESSA in the 
formulation of QSPRs for a diverse set of 411 chemicals.1  Engelhardt et al used topological 
descriptors and computational neural networks (CNNs) in the formulation of QSPRs for the 
estimation of VP for a diverse set of 420 organic compounds.3  Liang and Gallagher,4  along with 
Staikova et al,5 used quantum chemically derived indices, polarizability in particular, in the 
development of QSPRs for vapor pressure estimation. 

Basak et al formulated the hierarchical quantitative structure-activity relationship (HiQSAR) 
approach for the estimation of properties, biomedicinal activities, and toxicities of chemicals 
from computed descriptors.6-18  The objective of this HiQSAR/ HiQSPR research has been two-
fold: description and prediction.  The HiQSPR formalism uses progressively more complex 
indices in the development of models.  The type of parameters important for the estimation of a 
property at each level, e.g., topological, geometrical, and quantum chemical, can be determined 
and used in order to understand the molecular and submolecular basis of the property 
(description), and good quality models based on algorithmically derived descriptors can be used 
for the estimation of the property of interest for any chemical, real or hypothetical (prediction).   

Basak et al have used the HiQSPR approach previously in the development of VP prediction 
models.12,15  However, the current study utilizes an expanded set of descriptors along with three 
statistical modeling approaches, namely ridge regression (RR), principal components regression 
(PCR), and partial least squares (PLS) regression, which are appropriate for data sets wherein the 
number descriptors is large with respect to the number of chemical compounds and when the 
molecular descriptors are highly intercorrelated. 
 
 
Methods and Materials 
 
Experimental Data 
The set of 469 chemicals used in this study was obtained from the Assessment Tools for the 
Evaluation of Risk  (ASTER) database19 and represents a subset of the Toxic Substances Control 
Act (TSCA) Inventory20 for which vapor pressure (pvap) was measured at 25 °C with a pressure 
range of approximately 3 –10 000 mm Hg.  The molecular weights of the compounds in this data 
set range from 40 to 338, and the chemical diversity is described in Table 1. 
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Table 1. Chemical class composition of the vapor pressure data set 

Compound classification No. of compounds Pure Substituted 
Total Data Set 469   
Hydrocarbons 253   
Non-Hydrocarbons 216   
   Nitro compounds 4 3 1 
   Amines 20 17 3 
   Nitriles 5 4 1 
   Ketones 7 7 0 
   Halogens 97 92 5 
   Anhydrides 1 1 0 
   Esters 18 16 2 
   Carboxylic acids 2 2 0 
   Alcohols 10 6 4 
   Sulfides 38 37 1 
   Thiols 4  4 0 
   Imines 2 2 0 
   Epoxides 1 1 0 
Aromatic compoundsa 15 10 4 
Fused-ring compoundsb 1 1 0 
a The 15 aromatic compounds are a mixture of 11 aromatic hydrocarbons and four aromatic 
halides. 
b The only fused-ring compound was a polycyclic aromatic hydrocarbon.   
Reproduced with permission from J. Chem. Inf. Comput. Sci. 2001, 41, 692-701. Copyright 2001 
Am. Chem. Soc. 
 
Structural descriptors and hierarchical QSAR 
In general, a wide variety of molecular descriptors based on chemical structure have been 
formulated and used in QSAR and QSPR studies.21,22 

 In the present study, the majority of the topological descriptors were calculated using software 
including POLLY v. 2.323 and Triplet24.   The topological descriptors obtained from these 
programs include Wiener number25  molecular connectivity indices developed by Randić26 and 
Kier and Hall,27 frequency of path lengths of varying size,27 information theoretic indices defined 
on distance matrices of graphs using the methods of Bonchev and Trinajstić,28 Roy et al.,29 Basak 
et al.,30,31 as well as those of Raychaudhury et al.,32 parameters defined on the neighborhood 
complexity of vertices in hydrogen-filled molecular graphs,10,11,12 and Balaban's J indices33-35 as 
well as the triplet indices.24  The triplets result from a matrix, main diagonal column vector, and 
free term column vector which are converted into a system of linear equations.  The notation 
used to represent the vectors and matrices is as follows: 
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  A = Adjacency matrix 
  V = Vertex degree  
  S = Distance sum 
  N = Total number of vertices in the graph 
  Z = Atomic number 
  D = Distance matrix 
  1 = Unity matrix. 
 After the system of N linear equations is solved, the local vertex invariants, xi, are 
assembled into a triplet descriptor based on one of the following operations:  

1.  Summation, ∑ixi 
2.  Summation of squares, ∑ixi

2 

3.  Summation of square roots, ∑ixi
1/2 

4.  Sum of inverse square root of cross-product over edges ij, ∑ij(xixj) -1/2 
5.  Product, N(Πixi)1/N 

Additional topological descriptors, including an extended set of molecular connectivity 
indices, electrotopological state descriptors,36,37 general polarity descriptors, and hydrogen 
bonding descriptors, were calculated by Molconn-Z v. 3.50.38 An additional hydrogen bonding 
parameter was obtained from software developed by Basak et al.39  

In addition, ten geometrical descriptors were calculated, including six kappa shape indices 
which were also obtained by Molconn-Z v. 3.50. Van der Waals volume, VW, was calculated 
using Sybyl v. 6.2.40 In addition, two variants of the 3-D Wiener number, 3DW and 3DWH, based 
on the hydrogen-suppressed and hydrogen-filled geometric distance matrices, respectively, were 
also calculated by Sybyl v 6.2 using a SPL (Sybyl Programming Language) program developed 
by our group.   

The six quantum chemical descriptors included in the study; namely, EHOMO, EHOMO-1, ELUMO, 
ELUMO+1, ∆Hf, and µ, were calculated for the AM1 semi-empirical Hamiltonian using MOPAC v.  
6.0 41 in the Sybl interface.40   

A complete list of the 379 parameters calculated for use in the current study, including brief 
descriptions, is provided in Table 2. Note that the topological descriptors are partitioned into two 
classes:  topostructural, which are based solely on the connectivity of atoms within a molecule, 
and topochemical, which encode chemical as well as topological information.  From the initial 
set of descriptors listed in Table 2, the following descriptors were removed and not used in the 
subsequent analyses: 1) Any descriptor with a constant value for all of the 469 chemicals in the 
data set, 2) one descriptor of each perfectly correlated pair (i.e., r = 1.0), as determined by the 
CORR procedure of the SAS statistical package,42 and any descriptors with undefined values. A 
total of 268 descriptors were retained and subsequently used in model development.   
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Table 2. Symbols, definitions and classification of calculated molecular descriptors 

 Topostructural (TS) 
IW

D Information index for the magnitudes of distances between all possible pairs of vertices 
of a graph 

IW
D Mean information index for the magnitude of distance 

W Wiener index = half-sum of the off-diagonal elements of the distance matrix of a graph 
ID Degree complexity 
HV Graph vertex complexity 
 
HD Graph distance complexity 

IC Information content of the distance matrix partitioned by frequency of occurrences of 
distance h 

M1 A Zagreb group parameter = sum of square of degree over all vertices 
M2 A Zagreb group parameter = sum of cross-product of degrees over all neighboring 

(connected) vertices 
hχ Path connectivity index of order h = 0–10 
hχC Cluster connectivity index of order h = 3–6 
hχPC Path-cluster connectivity index of order h = 4–6 
hχCh Chain connectivity index of order h = 3–10 
Ph Number of paths of length h = 0–10 
J Balaban’s J index based on topological distance  
nrings Number of rings in a graph 
ncirc Number of circuits in a graph 
DN2Sy Triplet index from distance matrix, square of graph order (# of non-H atoms), and 

distance sum; operation y = 1–5 
DN21y Triplet index from distance matrix, square of graph order, and number 1; operation y = 

1–5 
AS1y Triplet index from adjacency matrix, distance sum, and number 1;  

operation y = 1–5 
DS1y Triplet index from distance matrix, distance sum, and number 1;  

operation y = 1–5 
ASNy Triplet index from adjacency matrix, distance sum, and graph order; operation y = 1–5 
DSNy Triplet index from distance matrix, distance sum, and graph order;  

operation y = 1–5 
DN2Ny Triplet index from distance matrix, square of graph order, and graph order; operation y = 

1–5 
ANSy Triplet index from adjacency matrix, graph order, and distance sum; operation y = 1–5 
AN1y Triplet index from adjacency matrix, graph order, and number 1;  

operation y = 1–5 
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Table 2. Continued 

ANNy Triplet index from adjacency matrix, graph order, and graph order again; operation y = 1–5 
ASVy Triplet index from adjacency matrix, distance sum, and vertex degree; operation y = 1–5 
DSVy Triplet index from distance matrix, distance sum, and vertex degree; operation y = 1–5 
ANVy Triplet index from adjacency matrix, graph order, and vertex degree; operation y = 1–5 

Topochemical (TC) 
O Order of neighborhood when ICr reaches its maximum value for the hydrogen-filled 

graph 
Oorb Order of neighborhood when ICr reaches its maximum value for the hydrogen-

suppressed graph 
Iorb Information content or complexity of the hydrogen-suppressed graph at its maximum 

neighborhood of vertices 
ICr Mean information content or complexity of a graph based on the rth (r = 0–6) order 

neighborhood of vertices in a hydrogen-filled graph 
SICr Structural information content for rth (r = 0–6) order neighborhood of vertices in a 

hydrogen-filled graph 
CICr Complementary information content for rth (r = 0–6) order neighborhood of vertices in a 

hydrogen-filled graph 
hχb Bond path connectivity index of order h = 0–6 
hχb

C Bond cluster connectivity index of order h = 3–6 
hχb

Ch Bond chain connectivity index of order h = 3–6 
hχb

PC Bond path-cluster connectivity index of order h = 4–6 
hχv Valence path connectivity index of order h = 0–10 
hχv

C Valence cluster connectivity index of order h = 3–6 
hχv

Ch Valence chain connectivity index of order h = 3–10 
hχv

PC Valence path-cluster connectivity index of order h = 4–6 
JB Balaban’s J index based on bond types 
JX Balaban’s J index based on relative electronegativities 
JY Balaban’s J index based on relative covalent radii 
HB1 Hydrogen bonding parameter 
AZVy Triplet index from adjacency matrix, atomic number, and vertex degree; operation y = 1–5 
AZSy Triplet index from adjacency matrix, atomic number, and distance sum; operation y = 1–5 
ASZy Triplet index from adjacency matrix, distance sum, and atomic number; operation y = 1–5 
AZNy Triplet index from adjacency matrix, atomic number, and graph order; operation y = 1–5 
ANZy Triplet index from adjacency matrix, graph order, and atomic number; operation y = 1–5 
DSZy Triplet index from distance matrix, distance sum, and atomic number; operation y = 1–5 
DN2Zy Triplet index from distance matrix, square of graph order, and atomic number; operation 

y = 1–5 
nvx Number of non-hydrogen atoms in a molecule 
nelem Number of elements in a molecule  
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Table 2. Continued 

fw Molecular weight  
si Shannon information index 
totop Total Topological Index t 
sumI Sum of the intrinsic state values I 
sumdelI Sum of delta-I values  
tets2 Total topological state index based on electrotopological state indices 
phia Flexibility index (kp1* kp2/nvx)  
IdCbar Bonchev-Trinajstić information index 
IdC Bonchev-Trinajstić information index 
Wp Wienerp 
Pf Plattf 
Wt Total Wiener number 
knotp Difference of chi-cluster-3 and path/cluster-4 
knotpv Valence difference of chi-cluster-3 and path/cluster-4 
nclass Number of classes of topologically (symmetry) equivalent graph vertices 
numHBd Number of hydrogen bond donors 
numwHBd Number of weak hydrogen bond donors 
numHBa Number of hydrogen bond acceptors  
SHCsats E-State of C sp3 bonded to other saturated C atoms 
SHCsatu E-State of C sp3 bonded to unsaturated C atoms 
SHvin E-State of C atoms in the vinyl group, =CH– 
SHtvin E-State of C atoms in the terminal vinyl group, =CH2 
SHavin E-State of C atoms in the vinyl group, =CH–, bonded to an aromatic C 
SHarom E-State of C sp2 which are part of an aromatic system 
SHHBd Hydrogen bond donor index, sum of Hydrogen E-State values for –OH, =NH,–NH2, –

NH–, –SH, and #CH 
 

SHwHBd Weak hydrogen bond donor index, sum of C–H Hydrogen E-State values for hydrogen 
atoms on a C to which a F and/or Cl are also bonded 

SHHBa Hydrogen bond acceptor index, sum of the E-State values for –OH, =NH,–NH2, –NH–, 
>N–, –O–, –S–, along with –F and –Cl 

Qv General Polarity descriptor  
NHBinty Count of potential internal hydrogen bonders (y = 2–10) 
SHBinty E-State descriptors of potential internal hydrogen bond strength (y =2–10) 
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Table 2. Continued 

 Electrotopological State index values for atoms types: SHsOH, SHdNH, SHsSH, 
SHsNH2, SHssNH, SHtCH, SHother, SHCHnX, Hmax Gmax, Hmin, Gmin, Hmaxpos, 
Hminneg, SsLi, SssBe, Sssss,Bem, SssBH, SsssB, SssssBm, SsCH3, SdCH2, SssCH2, 
StCH, SdsCH, SaaCH, SsssCH, SddC,StsC, SdssC, SaasC, SaaaC, SssssC, SsNH3p, 
SsNH2, SssNH2p, SdNH, SssNH, SaaNH, StN, SsssNHp, SdsN, SaaN, SsssN, SddsN, 
SaasN, SssssNp, SsOH, SdO, SssO, SaaO, SsF, SsSiH3, SssSiH2, SsssSiH, SssssSi, 
SsPH2, SssPH, SsssP, SdsssP, SsssssP, SsSH, SdS, SssS, SaaS, SdssS, SddssS, SssssssS, 
SsCl, SsGeH3, SssGeH2, SsssGeH, SssssGe, SsAsH2, SssAsH, SsssAs, SdsssAs, 
SsssssAs, SsSeH, SdSe, SssSe, SaaSe, SdssSe, SddssSe, SsBr, SsSnH3, SssSnH2, 
SsssSnH, SssssSn, SsI, SsPbH3, SssPbH2, SsssPbH, SssssPb 

 Geometrical / Shape (3D) 
kp0 Kappa zero 
kp1–kp3 Kappa simple indices 
ka1–ka3 Kappa alpha indices 
VW Van der Waals volume 
3DW 3D Wiener number based on the hydrogen-suppressed geometric distance matrix 
3DWH 3D Wiener number based on the hydrogen-filled geometric distance matrix 
 Quantum Chemical (QC) 
EHOMO Energy of the highest occupied molecular orbital 
EHOMO-1 Energy of the second highest occupied molecular 
ELUMO Energy of the lowest unoccupied molecular orbital 
ELUMO+1 Energy of the second lowest unoccupied molecular orbital 
∆Hf Heat of formation 
µ Dipole moment 
 

We have used the hierarchical QSAR (HiQSAR) approach to model development in which 
increasingly more complex and computer-resource intensive classes of structural descriptors are 
used in a graduated manner, first utilizing the topostructural (TS) descriptors alone, followed by 
the addition of the topochemical (TC) descriptors, the 3-dimensional (3D) descriptors, and 
finally the quantum chemical (QC) descriptors. The predictive ability of the resulting models, 
based on the cross-validated R2 values, are compared in order to determine whether or not the 
more complex descriptors are necessary in order to predict the property or activity of interest, or 
if the easily calculable descriptors are sufficient. For comparative purposes, predictive models 
based on each descriptor class, alone, were also developed.   
 
Statistical methodology  
Prior to analysis, all calculated descriptors were transformed by:  ln (x + c), where x represents 
the original descriptor value and c is a constant added to avoid possible arithmetic error.  In most 
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cases, c = 1, as the original descriptor values are generally greater than -1.  A small number of 
descriptors, however, have minimum values less than or equal to -1, in which case the constant 
added was the smallest natural number that would provide a positive sum in the equation above.  

For comparative purposes, three regression methodologies were used for the development of 
predictive models, namely ridge regression (RR),43 principal components regression (PCR),44 
and partial least squares (PLS).45 Each of these methodologies makes use of all available 
descriptors, as opposed to subset regression, and is useful when the number of descriptors is 
large with respect to the number of compounds and when the descriptors are highly 
intercorrelated. Formal comparisons have consistently shown that using a subset of available 
descriptors is less effective than using alternative regression methods that retain all available 
descriptors, such as RR, PCR, and PLS.45,46  RR is similar to PCR in that the independent 
variables are transformed to their principal components (PCs).  However, while PCR utilizes 
only a subset of the PCs, RR retains them all but downweights them based on their eigenvalues.43 
With PLS, a subset of the PCs is also used, but the PCs are selected by considering both the 
independent and dependent variables. For each model developed, the cross-validated R2 was 
obtained using the leave-one-out approach and can be calculated as follows (eq. 1):  

      2 1cv
PRESSR
SSTotal

= −        1 

where PRESS is the prediction sum of squares and SSTotal is the total sum of squares. For the 
sake of brevity, the highly parameterized models are not included in this paper, rather the cross-
validated R2 and PRESS statistic are reported for each model.  Another useful statistical metric is 
the t value associated with each model descriptor, defined as the descriptor coefficient divided by 
its standard error.  Descriptors with large | t | values are important in the predictive model and, as 
such, can be examined in order to gain some understanding of the nature of the property or 
activity of interest. 

It should be strongly stated that ordinary least squares (OLS) regression is inappropriate 
when the number of descriptors is large with respect to the number of chemical compounds in 
the data set, and that the conventional R2 metric is without value in this situation. Unlike R2, 
which tends to increase upon the addition of any descriptor, the cross-validated R2 tends to 
decrease upon the addition of irrelevant descriptors and is a reliable measure of model 
predictability.47  Unlike ordinary least squares regression, the number of descriptors is not an 
issue with the regression methodologies used in the present study.  The number of descriptors 
included in the regression models developed in this study is as follows: TS (99), TS+TC (252), 
TS+TC+3D (262), TS+TC+3D+QC (268), TC (99), 3D (10), QC (6).  RR, PCR, and PLS are 
appropriate methodologies when the number of descriptors exceeds the number of observations, 
and they are designed to utilize all available descriptors, as opposed to subset regression, in order 
to produce an unbiased model whose predictability is accurately reflected by the R2

cv, regardless 
of the number of independent variables in the model. The distinction between these methods and 
OLS regression is important and cannot be overemphasized.   
 



Issue in Honor of Prof. Alexandru T. Balaban ARKIVOC 2005 (x) 308-320 

ISSN 1424-6376 Page 317 ©ARKAT USA, Inc 

Results and Discussion 
 
The major objective of this paper was the estimation of vapor pressure of chemicals using 
molecular descriptors that can be computed directly from molecular structure without the input 
of any other experimental data.  To this end, we used topostructural, topochemical, geometrical, 
and quantum chemical descriptors in the formulation of HiQSPR models for log10(pvap). All 
models developed in this study are based the complete set of 469 structurally diverse chemicals. 
Results in Table 3 indicate that the combination of TS and TC descriptors resulted in a highly 
predictive RR model (R2

c.v = 0.895).; the addition of three dimensional and quantum chemical 
indices to the set of independent variables did not result in significant improvement in model 
quality.  It may be noted that we have observed such results for various other physicochemical 
and biological properties including mutagenicity,10,48 boiling point,49 blood:air partition 
coefficient,50 tissue: air partition coefficient,51 etc.6,14,16,18  Only in limited cases, e.g., 
halocarbon toxicity,9 the addition of quantum chemical indices after TS and TC parameters 
resulted in significant improvement in QSAR model quality. 
 It is interesting to note that of the three linear regression methods used, viz. RR, PCS, and 
PLS, ridge regression outperformed the other two methods significantly.  This is in line with our 
earlier observations with HiQSARs using the three methods.14,50-52  
 
Table 3. Ridge regression (RR), principal components regression (PCR), and partial least 
squares (PCR) regression model metrics  

RR  PCR  PLS  
Model Type R2 c.v. PRESS  R2 c.v. PRESS  R2 c.v. PRESS 

TS 0.444 135  0.451 133  0.445 134 
TS+TC 0.895 25.3  0.479 126  0.480 126 

TS+TC+3D 0.902 23.7  0.481 125  0.468 129 
TS+TC+3D+QC 0.906 22.8  0.488 124  0.465 129 

         
TS 0.444 135  0.451 133  0.445 134 
TC 0.851 35.9  0.473 127  0.524 115 
3D 0.552 108  0.453 132  0.556 107 
QC 0.201 193  0.189 196  0.203 193 

 
It is instructive to look at the top ten molecular descriptors, based on t value, in the ridge 

regression VP model derived from TS + TC indices (Table 4).  They can be looked upon as 
representing the following features: a) size (totop, DN2Z1), hydrogen bonding (HB1, SHHBa), c) 
polarity (Qv), d) heterogeneity of atom types (IC0),  and e) presence of various types of hetero 
atoms and functional groups (SssO, SsF, SsNH2, SaaO).  
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In the LSER approach, a combination of molecular size, hydrogen bonding, and polarity are 
used to estimate partitioning behavior of chemicals.53,54  The presence of specific hetero atoms, 
functional groups and different atom types, as encoded by information theoretic, triplet, and 
electrotopological indices, will probably be related to dipole-dipole interactions among the 
molecules and also specific regional interactions such as hydrogen bonding.  Such factors have 
been found to be useful in predicting VP by Liang and Gallagher,4  Katritzky et al,1  Engelhardt 
et al,3 and  Staikova et al.5  
 
Table 4.  Important topological descriptors for the prediction of vapor pressure, based on t value, 
from the TS+TC ridge regression model 

Descriptor label  Description | t | 
SssO Sum of the E-states for –O– 10.07 
SsF Sum of the E-states for –F 8.58 
HB1 General hydrogen bonding descriptor 7.76 
SsNH2 Sum of the E-states for –NH2 6.83 
IC0 Mean information content or complexity of a hydrogen-filled 

   graph based on the 0 order neighborhood of vertices 
6.57 

SaaO Sum of the E-states for :O: 6.56 
SHHBa Hydrogen bond acceptor index 6.21 
DN2Z1 

 
Triplet index from distance matrix, square of graph order (number    
   of vertices), and atomic number 6.13 

Qv General polarity descriptor 6.06 
totop Total topological index     5.87 
 

In conclusion, the VP prediction model for a diverse set of organic chemicals derived from 
easily calculated molecular descriptors gave very good results.  Such a model could be useful in 
the estimation of vapor pressure of chemicals that fall within the structural types considered in 
this paper. 
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