Preparation of oxo-substituted α-chloro ethers and their reaction with samarium diiodide

Tore Skjæret and Tore Benneche*

Department of Chemistry, University of Oslo, PO Box 1033, Blindern, 0315 Oslo, Norway E-mail: <u>tore.benneche@kjemi.uio.no</u>

(received 23 Jun 01; accepted 18 Oct 01; published on the web 26 Oct 01)

Abstract

Oxo-substituted α -chloro ethers have been prepared by cleavage of the corresponding *O*,*S*-acetals with sulfuryl dichloride. Some of these α -chloro ethers give hydroxysubstituted oxygen heterocycles when reacted with samarium diiodide.

Keywords: α -Chloro ethers, samarium diiodide, hydroxysubstituted oxygen heterocycles, intramolecular samarium Barbier reaction

Introduction

Oxo-substituted α -chloro ethers like 1 (Fig. 1) are hardly known in the literature. One of the few examples is the fluorinated α -chloro ether 2, which was prepared by chlorination of a methoxy group.¹

Figure 1

We have previously prepared a number of α -chloro ethers by cleavage of *O*,*S*-acetals with sulfuryl dichloride.² (Scheme 1)

Scheme 1

This method has also been used to prepare 4-acetyl- chloromethoxybenzene.^{2a} We believed that the method could be useful in the synthesis of α -chloro ethers like **1**, since the requested *O*,*S*-acetals could in principle be accessible from readily available hydroxy ketones. α -Halo ethers react with samarium diiodide in the presence of ketones to give α -alkoxy alcohols.³ To our knowledge an intramolecular version of this reaction has not been documented. Such a reaction would be an example of an intramolecular Samarium-Barbier reaction and would give hydroxysubstituted oxy-rings. The ring size being dependent on the chain length between the α -chloro ether function and the oxo-group. A number of oxygen heterocyles are important compounds; oxolanes and oxanes for instance occur in a wide variety of biologically active compounds.⁴ In this paper we present our results in the preparation of oxy-substituted α -chloro ethers.

Results and Discussion

A convenient way to make *O*,*S*-acetals from alcohols, is to react the alcohol with chloromethyl methyl sulfide under basic conditions.⁵ This method (Method A, Table 1) proved useful for the hydroxy ketones **3d**, **3f** and **3g** (Table 1, entries 4, 6 and 7). In the case of **3a**, **3b**, **3c** and **3e**, however, the method was useless (entries 1, 2, 3 and 5).

O,*S*-acetals can also be formed from alcohols by a reacting the alcohol with DMSO in the presence of acetic anhydride and acetic acid.⁶ This protocol (Method B, Table 1) gave mostly good yields where Method A had failed (entries 2 - 5).

	R—0 3	Method A or B ⊃H →	R–OCH ₂ SMe 4	9
Entry	Compound	ROH	Method A ^a Yield of 4 ^c	Method B ⁰ Yield of 4 ^c
1	3a	ОН	0	23
2	3b	ОН	0	63
3	3с	ОН	0	72
3	3d	ОН	46	63
5	3e	Ph	0 ⁷	58
6	3f	ОН	89	-
7	3g	Ph	76	-

Table 1. Preparation of hemithioacetals

^a Method A:⁵ ClCH₂Me, NaH, NaI/DMF. ^b Method B:⁶ DMSO/Ac2O/Ac OH. ^c Isolated

Cleavage of the *O*,*S*-acetals **4** with sulfuryl dichloride gave the corresponding α -chloro ethers **5** in almost quantitative yield (Table 2, entries 1-5 and 7) except in one case (**4f**, entry 6) where a mixture of products was obtained.

Table 2	Preparation	of α -chloro	ethers
---------	-------------	---------------------	--------

	R-OCH ₂ SMe 4	SO ₂ CI ₂	R-OCH ₂ CI 5	+ MeSCI
Entry	Compound	ROH		Yield of 5 ^a
1	4a	Ĵ	DSMe	~quant.
2	4b	Ĵ	∕o∕∽sMe	~quant.
3	4c	\downarrow	O SMe	~quant.
4	4d		OSMe	~quant.
5	4e	Ph	∼ _O ∕∽ _{SMe}	~quant.
6	4f		∽ ∽ _{SMe}	0 ^{<i>b</i>}
7	4g		`Ph ∕─_ _{SMe}	~quant.

^{*a*} Crude product. ^{*b*} ¹H-NMR signal of the crude product indicated the presence of an α -chloro ether

The reason why the *O*,*S*-acetal **4f** does not cleanly give the corresponding α -chloro ether, must come from the position of the acetyl group and the fact that the acetyl group can enolize. This because the *para*-isomer 4-acetyl-chloromethoxybenzene has been synthesized in good yield by cleavage of an *O*,*S*-acetal with sulfuryl dichloride ^{2a} and the *O*,*S*-acetal **4g**, which does not have an enolizable keto group, is cleanly cleaved to the corresponding α -chloro ether. 2-Formyl-chloromethoxybenzene has also been prepared in good yield by cleavage of the corresponding *O*,*S*-acetal with sulfuryl dichloride.⁸

The cyclization of the α -chloro ether **5a** with samarium diiodide met with little success. No oxetane formation was observed (Table 3, entry 1). This was not surprising since formation of a 4-membered ring from a simple halide in a similar reaction gave only 5 % yield.⁹ The formation five membered rings were easier and the 3hydroxyoxolanes **6b** and **6c** were obtained in moderate yields when the corresponding α -chloro ethers were treated with two equivalents of samarium diiodide in THF at - 78 °C (Table 3, entries 2 and 3). The diastereoselectivity in the cyclization of **5c** was 2.5 : 1. The phenyl ketone **5e** gave, however, no oxolane (entry 5). The 6-membered ring **6d** was formed in 47 % yield (entry 4).

Table 3. Preparation of 3-hydroxyoxolanes and 3-hydroxy-3-methyloxane

	$R \xrightarrow{H}_{R^{1}} O \xrightarrow{Sml_{2}} H$					10-201	
				5		6	
Entry	Compound	n	R	R1	Yield of 6 <i>a</i>	_	
1	5a	0	Me	Н	0	_	
2	5b	1	Me	Н	54		
3	5c	1	Me	Me	65		
4	5d	2	Me	Н	47		
5	5e	1	Ph	Н	0	_	

^a Isolated

When the α -chloro ether **5g** was treated with samarium diiodide the oxepinon **7** was formed together with the oxolane **6g** (Scheme 2). The oxepinon was the main product.

The oxepinon can be formed by hydride elimination from compound **8**, which may be formed by a nucleophilic attac by an organosamarium species *ortho* to the keto group. This would resemble an 1,4-addition by a nucleophile to an α , β -unsaturated ketone.

In summary oxy-substituted α -chloro ethers are readily made by cleavage of *O*,*S*-acetals by sulfuryl dichloride. α -Chloro ethers are readily reduced by samarium diiodide and oxo-substituted α -chloro ethers may be cyclized to five or six membered rings by samarium diiodide.

Scheme 2

Experimental Section

General Procedures. All reactions were conducted under an inert amosphere of either Ar or N₂. THF was distilled from sodium and benzophenone. Dichloromethane, acetonitrile and *N*,*N*-dimethylformamide (DMF) were dried with CaH₂ before distillation. NMR spectra were recorded at 300 MHz (¹H) and at 75 MHz (¹³C) on a Bruker Avance DPX 300 instrument. Mass spectra, under electron impact conditions, were recorded at 70 eV ionizing energy on a Fision ProSpec instrument. The spectra are presented as m/z (% rel. int.). The melting points are uncorrected.

General procedures for the preparation of the *O*,*S***-acetals (4).** Method A:⁵ The alcohol 3 (10.0 mmol) in DMF (20 mL) was added to a mixture of sodium hydride (0.38 g 15.0 mmol, 95 % in paraffine) and NaI (1.5 g, 10 mmol) at 0 °C under N₂. After stirring for 15 min was chloromethyl methyl sulfide (1.10 mL, 13.0 mmol) added dropwise. The mixture was stirred for 10 h while reaching ambient temperature before ice/water was added, the product extracted into diethyl ether, dried (MgSO₄) and the solvent removed under reduced pressure. The crude product was purified by distillation, recrystallization or flash chromatography on silica gel.

2-Acetyl-1-methylthiomethoxybenzene (4f). Eluent hexane-ethyl acetate 10:1; mp 33.5-

34.5 °C (hexane); (Found: M^+ , 196.0552. $C_{10}H_{12}O_2S$ requires 196.0558); ¹H-NMR δ (300 MHz, CDCl₃) 2.25 (3H, s, SCH₃), 2.62 (3H, s, CH₃), 5.22 (2H, s, CH₂), 6.96-7.05 (2H, m, Ar,), 7.40-7.43 (1H, m, Ar), 7.69-7.72 (1H, m, Ar); ¹³C-NMR δ (75 MHz, CDCl₃) 15.1 (SCH₃), 31.7 (CH₃), 72.9 (CH₂), 113.8 (CH), 121.5 (CH), 129.5 (C), 130.5 (CH), 133.2 (CH), 156.2 (C), 199.6 (CO);

m/z (EI) 196 (M⁺, 7%), 149 (20), 61 (100).

2-Methylthiomethoxybenzophenone (**4g**). Mp. 65-66 $^{\circ}$ C (hexane) (Found: M⁺, 258.0709. C₁₅H₁₄O₂S requires 258.0715); ¹H-NMR δ (300 MHz, CDCl₃) 1.90 (3H, s, SCH₃), 5.02 (2H, s, CH₂), 7.01-7.07 (2H, m, Ar), 7.34-7.52 (5H, m, Ar), 7.79-7.81 (1H, m, Ar); ¹³CNMR δ (75 MHz, CDCl₃) 14.3 (SCH₃), 72.7 (CH₂), 114.2 (CH), 121.5 (CH), 128.2 (CH), 129.5 (CH), 129.7 (CH), 130.3 (C), 131.4 (CH), 132.9 (CH), 137.7 (C), 154.3 (C), 196,1 (CO); m/z (EI) 258 (M⁺, 6 %), 194 (6), 211 (21), 182 (6), 137 (8), 121 (10), 77 (18), 61 (100).

Method B:⁶ A mixture of the alcohol **3** (10.0 mmol), DMSO (33 mL), acetic acid (6.5 mL), acetic anhydride (33 mL) and water (0.7 mL) was stirred for 48 h at ambient temperature before it was poured into a cold solution of 10 % Na₂CO₃ in water and extracted with chloroform. The organic phase was washed with water (5x), dried (MgSO₄) and evaporated. The crude product was purified by flash chromatography on silica gel.

1-Methylthiomethoxy-2-propanone (4a). Eluent hexane-ethyl acetate 5:1 (Found: M^+ , 134.0394. $C_5H_{10}O_2S$ requires 134.0402); ¹H-NMR δ (300 MHz, CDCl₃) 2.04 (3H, s, CH₃), 2.05 (3H, s, CH₃), 4.08 (2H, s, CH₂), 4.61 (2H, s, CH₂); ¹³C-NMR δ (75 MHz, CDCl₃) 13.7 (CH₃S), 26.2 (CH₃), 72.2 (CH₂), 75.3 (CH₂), 205.3 (C); m/z (EI) 134 (M⁺, 0.7 %), 87 (29), 61 (100), 58 (45), 57 (25), 43 (40).

4-Methylthiomethoxy-2-butanone (4b). Eluent hexane-ethyl acetate 5:1 (Found: M⁺, 148.0562. C₆H₁₂O₂S requires 148.0558); δH (300 MHz, CDCl₃) 2.03 (3H, s, CH₃S), 2.09 (3H, s, CH₃S), 2.60 (2H, t, CH₂, *J* 6.1), 3.68 (2H, t, CH₂, *J* 6.1), 4.52 (2H, s, CH₂); δC (75 MHz, CDCl₃) 13.7 (CH₃S), 30.1 (CH₃), 43.1 (CH₂), 62.8 (CH₂), 75.2 (CH₂), 206.5 (C); m/z (EI) 148 (M⁺, 2 %), 101 (59), 71 (27), 61 (22), 43 (100).

4-Methylthiomethoxy-3-methyl-2-butanone (4c). Eluent hexane-ethyl acetate 12:1 (Found: M^+ , 162.0720. $C_7H_{14}O_2S$ requires 162.0715); ¹H-NMR $\delta(300 \text{ MHz}, \text{CDCl}_3)$ 1.03 (3H, d, CH₃, J 7.1), 2.04 (3H, s, SCH₃), 2.11 (3H, s, CH₃), 2.75 (1H, ddq, CH, J 7.5, 7.1 and 5.3), 3.50 (1H, dd, CH, J 9.3 and 5.3), 3.60 (1H, dd, CH, J 9.3 and 7.5), 4.52 (2H, s, OCH₂S); ¹³C-NMR δ (75 MHz, CDCl₃) 13.2 (CH₃), 13.8 (CH₃), 28.6 (CH₃), 46.7 (CH), 69.5 (CH₂), 75.3 (CH₂), 210.4 (CO); m/z (EI) 162 (M⁺, 0.5 %), 115 (55), 85 (23), 61 (30), 43 (100).

5-Methylthiomethoxy-2-pentanone (**4d**). Eluent hexane-ethyl acetate 5:1 (Found: M^+ , 162.0726. $C_7H_{14}O_2S$ requires 162.0715); ¹H-NMR δ (300 MHz, CDCl₃) 1.75 (2H, tt, CH₂, *J* 6.2 and 7.2), 2.03 (3H, s, CH₃), 2.04 (3H, s, CH₃), 2.43 (2H, t, CH₂, *J* 7.2), 3.41 (2H, t, CH₂, *J* 6.2), 4.49 (2H, s, OCH₂S); ¹³C-NMR δ (75 MHz, CDCl₃) 13.8 (CH₃S), 23.3 (CH₃), 29.7 (CH₂), 40.1 (CH₂), 66.9 (CH₂), 75.0 (CH₂), 208.0 (CO); m/z (EI) 162 (M⁺, 0.2 %), 115 (69), 101 (15), 85 (100), 43 (29).

3-Methylthiomethoxy-1-phenyl-1-propanone (4e). Eluent hexane-ethyl acetate 9:1 (Found: M⁺- SCH₃, 163.0764. C₁₀H₁₁O₂ requires 163.0759); ¹H-NMR δ (300 MHz, CDCl₃) 2.09 (3H, s, SCH₃), 3.23 (2H, t, CH₂, *J* 6.3), 3.94 (2H, t, CH₂, *J* 6.3), 4.62 (2H, s, OCH₂S), 7,40 - 7.56 (3H, m, Ar), 7.91 - 7.94 (2H, m, Ar); ¹³C-NMR δ (75 MHz, CDCl₃) 13.8 (SCH₃), 38,3 (CH₂), 63.3 (CH₂), 75.4 (OCH₂S), 128.0 (2 x CH), 128.5 (2 x CH), 133.1 (CH), 136.8 (C) 197.9 (CO).

General procedure for the synthesis of the (I-chloro ethers (5)). Sulfuryl dichloride (0.16 mL, 2.0 mmol) in dichloromethane (4 mL) was added to a solution of the *O*,*S*-acetal 4 (2.0 mmol) in dichloromethane (6 mL) at 0 °C under N₂. The mixture was stirred for 10 min before it was evaporated under reduced pressure. The crude product could be used in the next step without further purification. *Note*: The α -chloro ethers 5 are reactive compounds and thus potentially toxic. Care should be taken to avoid exposure.

1-Chloromethoxy-2-propanone (5a). ¹H-NMR δ (300 MHz, CDCl₃) 2.13 (3H, s, CH₃), 4.24 (2H, s, CH₂), 5.47 (2H, s, CH₂); ¹³C-NMR δ (75 MHz, CDCl₃) 26.4 (CH₃S), 73.7 (CH₂), 81.9 (CH₂), 203.8 (C).

4-Chloromethoxy-2-butanone (5b). ¹H-NMR δ (300 MHz, CDCl₃) 2.13 (3H, s, CH₃), 2.69 (2H, t, CH₂, *J* 6.1), 3.89 (2H, t, CH₂, *J* 6.1), 5.42 (2H, s, CH₂); ¹³C-NMR δ (75 MHz, CDCl₃) 30.2 (CH₃S), 42.6 (CH₂), 65.2 (CH₂), 82.9 (CH₂), 205.9 (C).

4-Chloromethoxy-3-methyl-2-butanone (**5**c). ¹H-NMR δ(300 MHz, CDCl₃) 1.03 (3H, d, CH₃, *J* 7.2), 2.10 (3H, s, CH₃), 2.76 (1H, ddq, CH, *J* 7.5, 7.2 and 5.4), 3.65 (1H, dd, CH, *J* 9.5 and 5.4), 3.73 (1H, dd, CH, *J* 9.5 and 7.5), 5.35 (1H, d, CH, *J* 5.5), 5.39 (1H, d, CH, *J* 5.5); ¹³C-NMR δ (75 MHz, CDCl₃) 13.1 (CH₃), 28.6 (CH₃), 46.2 (CH), 71.5 (CH₂), 82.8 (CH₂), 209.7 (C).

5-Chloromethoxy-2-pentanone (5d). ¹H-NMR δ (300 MHz, CDCl₃) 1.79 (1H, tt, CH, *J* 7.1 and 6.1), 2.05 (3H, s, CH₃), 2.45 (2H, d, CH₂, *J* 7.1), 3.60 (2H, d, CH₂, *J* 6.1), 5.38 (2H, s, CH₂); ¹³C-NMR δ (75 MHz, CDCl₃) 22.8 (CH₃), 29.8 (CH₂), 39.5 (CH₂), 69.3 (CH₂), 82.9 (CH₂), 207.7 (C).

3-Chloromethoxy-1-phenyl-1-propanone (5e). ¹H-NMR δ (300 MHz, CDCl₃) 3.29 (2H, t, CH₂, *J* 6.3), 4,13 (2H, t, CH₂, *J* 6.3), 5.53 (2H, s, OCH₂Cl), 7,44 - 7.58 (3H, m, Ar), 7.94 - 7.97 (2H, m, Ar); ¹³C-NMR δ (75 MHz, CDCl₃) 37,8 (CH₂), 65.8 (CH₂), 83.2 (CH₂), 128.0 (2 x CH), 128.7 (2 x CH), 133.3 (CH), 136.8 (C) 197.4 (CO).

2-Chloromethoxybenzophenone (**5g**). ¹H-NMR δ (300 MHz, CDCl₃) 5.73 (2H, s, CH₂), 7.16-7.80 (9H, m, Ar); ¹³C-NMR δ (75 MHz, CDCl₃) 76.8 (CH₂), 114.5 (CH), 123.2 (CH), 129.0 (2 x CH), 129.7 (2xCH), 129.8 (CH), 130.3 (C), 131.7 (CH), 133.2 (CH), 137.2 (C), 152.9 (C), 195.3 (C).

General procedure for the synthesis of 3-hydroxyoxolanes and 3-hydroxy-3-methyloxane. The α -chloro ether 5 (2.0 mmol) in dry THF (4 mL) was added to a solution of SmI₂ (4.0 mmol) in THF (10 mL) at - 78 °C under N₂. The mixture was stirred for 6 h while slowly reaching ambient temperature before it was poured into a saturated solution of K₂CO₃. The product was extracted into diethyl ether and the organic phase washed with a saturated solution of K₂CO₃ and a saturated solution of NaCl before it was dried (MgSO₄) and evaporated. The crude product was purified by flash chromatography on silica gel.

3-Hydroxy-3-methyloxolane (**6b**).¹⁰ Eluent hexane-ethyl acetate 1:2. (Found: M⁺, 102.0690. C₅H₁₀O₂ requires 102.0681); ¹H-NMR δ(300 MHz, CDCl₃) 1.36 (3H, s, CH₃), 1.85 - 1.93 (2H, m, CH₂), 2.55 (1H, s, OH), 3.47 (2H, d, CH₂, *J* 9.1), 3.64 (2H, d, CH₂, *J* 9.1), 3.83 - 3.87 (1H, m,

CH₂), 3.94 - 3.99 (1H, m, CH₂); ¹³C-NMR δ (75 MHz, CDCl₃) 24.0 (CH₃), 41.0 (CH₂), 67.6 (CH₂), 78.0 (CH), 79.4 (CH₂); m/z (EI) 102 (M⁺, 100 %), 87 (56), 72 (76), 57 (22).

3-Hydroxy-3,4-dimethyloxolane (6c). Eluent hexane-ethyl acetate 1:2. Diastereomer 1: (Found: M^+ , 116.0829. $C_6H_{12}O_2$ requires 116.0837); ¹H-NMR δ (300 MHz, CDCl₃) 0.91 (3H, d, CH₃, *J* 6.8), 1.22 (3H, s, CH₃), 1.96 (1H, ddq, CH, *J* 10.2, 8.1 and 6.8), 2.18 (1H, s, OH), 3.47 (1H, dd, CH, *J* 10.2 and 8.1), 3.60 (1H, d, CH, *J* 9.2), 3.70 (1H, d, CH, *J* 9.2), 3.70 (1H, dd, CH, *J* 8.1 and 8.1); ¹³C-NMR δ (75 MHz, CDCl₃) 8.8 (CH₃), 21.9 (CH₃), 43.1 (CH), 73.9 (CH₂), 78.0 (C), 80.1 (CH₂). Diastereomer 2: (Found: M⁺, 116.0838. C₆H₁₂O₂ requires 116.0837); ¹H-NMR δ (300 MHz, CDCl₃) 0.93 (3H, d, CH₃, *J* 7.2), 1.23 (3H, s, CH₃), 2.01 (1H, s, OH), 2.10 (1H, ddq, CH, *J* 8.5, 7.2 and 5.4), 3.39 (1H, dd, CH, *J* 7.1 and 5.4), 3.55 (1H, d, CH, *J* 9.1), 3.66 (1H, d, CH, *J* 9.1), 4.20 (1H, dd, CH, *J* 8.5 and 7.1); ¹³C-NMR δ (75 MHz, CDCl₃) 14.6 (CH₃), 19.8 (CH₃), 44.5 (CH), 74.9 (CH₂), 78.3 (C), 81.4 (CH₂); m/z (EI) 116 (M⁺, 2 %), 101 (3), 84 (6), 75 (88), 71 (80), 57 (15), 43 (100).

3-Hydroxy-3-methyloxane (6d).¹¹ Eluent hexane-ethyl acetate 1:1 (Found: M^+ , 116.0851. C₆H₁₂O₂ requires 116.0837); ¹H-NMR δ (300 MHz, CDCl₃) 1.08 (3H, s, CH₃), 1.41-1.52 (2H, m, CH₂), 1.61-1.70 (1H, m, CH), 1.74-1.88 (1H, m, CH), 2.60 (1H, s, OH), 3.25 (1H, d, CH, *J* 11.4), 3.34 (1H, dt, CH, *J* 11.1 and 2.7), 3.70 (1H, dd, CH, *J* 11.4 and 2.3), 3.78 (1H, dt, CH, *J* 11.1 and 3.3); ¹³C-NMR δ (75 MHz, CDCl₃) 22.4 (CH₃), 24.9 (CH₂), 35.8 (CH₂), 67.1 (C), 67.9 (CH₂), 76.9 (CH₂); m/z (EI) 116 (M⁺, 21 %), 84 (33), 74 (17), 71 (72), 58 (93), 43 (100).

3-Phenyl-3-hydroxy-2,3-dihydrobenzofuran (6g). Eluent hexane-ethyl acetate 10:1 (Found: M⁺, 212.0838. C₁₄H₁₂O₂ requires 212.0837); ¹H-NMR δ (300 MHz, CDCl₃) 2.36 (1H, s, OH), 4.49 (1H, d, CH, *J* 10.3), 4.68 (1H, d, CH, *J* 10.3), 6.93-7.50 (9H, m, Ar); ¹³C-NMR δ (75 MHz, CDCl₃) 82.5 (C), 86.1 (CH₂), 110.7 (CH), 121.4 (CH), 124.4 (CH), 126.0 (2 x CH), 127.5 (CH), 128.2 (2 x CH), 130.6 (CH), 132.2 (C), 142.6(C), 160.6(C); m/z (EI) 212 (M⁺, 100 %), 195 (48), 194 (53), 181 (29), 165 (43), 152 (26), 135 (48), 121 (39), 105 (25), 77 (41), 51 (17).

6,11-Dihydrobenzo[b,e]oxepin-11-on (**7**).^{12,13} Eluent hexane-ethyl acetate 10:1(Found: M⁺, 210.0682. C₁₄H₁₀O₂ requires 210.0681); ¹H-NMR $\delta_{\rm H}$ (300 MHz, CDCl₃) 5.16 (2H, s, CH₂), 7.01 - 7.09 (2H, m, Ar), 7.33 (1H, d, Ar, *J* 7.3), 7.43 - 7.52(3H, m, Ar), 7.88 (1H, d, Ar, *J* 7.3), 8.21 - 8.24 (1H, m, Ar); ¹³C-NMR δ (75 MHz, CDCl₃) 73.5 (CH₂), 120.6 (CH), 122.0 (CH), 125.3 (C), 127.7 (CH), 129.1 (CH), 129.4 (CH), 131.9 (CH), 132.6 (CH), 135.2 (CH), 135.6 (CH), 140.5 (CH), 161.2 (C), 191.0 (CO); m/z (EI) 210 (M⁺, 100 %), 181 (61), 153 (16), 152 (20), 89 (11), 76 (9), 63 (12).

References

- 1. Muffler, H.; Siegmund, G., Schwertfeger, W. J. Fluorine Chem. 1982, 21, 107.
- (a) Benneche, T.; Undheim, K. Acta Chem. Scand. 1983, Ser. B 37, 93. (b) Benneche, T.; Strande, P.; Undheim, K. Synthesis 1983, 762. (c) Antonsen, Ø.; Benneche, T.; Undheim, K. Acta Chem. Scand. 1989, 43, 56.

- (a) Kagan, H.B.; Namy, J. *Tetrahedron* **1986**, *42*, 6573. (b) Sasaki, M.; Collin, J.; Kagan, H. B. *New. J. Chem.* **1992**, *16*, 89. (c) Imamoto, T.; Hatajima, T.; Takiyama, N.; Takeyama, T.; Kamiya, Y.; Yoshizawa, T. *J. Chem. Soc.*, *Perkin Trans. 1* **1991**, 3127. (d) Imamoto, T.; Takeyama, T.; Yokoyama, M. *Tetrahedron Lett.* **1984**, *25*, 3225. (e) White, J. D.; Somers, T. C. *J. Am. Chem. Soc.* **1987**, *109*, 4424. (f) Antonsen, Ø.; Benneche, T.; Undheim, K. Acta Chem. Scand. **1992**, *46*, 757.
- (a) Keay, B. A.; Dibble, P. W. In *Comprehensive Heterocyclic Chemistry II*, C. W. Bird Ed., Pergamon: Oxford, 1996, Vol. 2, p 395. (b) Green, G. R.; Evans, J. M.; Vong, A. K. In *Comprehensive Heterocyclic Chemistry II*, C. W. Bird Ed., Pergamon: Oxford, 1996, Vol. 5, p. 469.
- (a) Corey, E. J.; Bock, M. C. *Tetrahedron Lett.* 1975, *38*, 3269. (b) Antonsen, Ø.; Benneche, T.; Undheim, K. *Acta Chem. Scand.* 1988, *Ser. B* 42, 515.
- 6. Pojer, P. M.; Angyal, S. J. Tetrahedron Lett. 1976, 35, 3067.
- 7. Nordlien, S.; and Benneche, T. MD thesis, University of Oslo, 1998.
- 8. Ringom, R.; and Benneche, T. Acta Chem. Scand. 1999, 53, 41.
- 9. Fukuzawa, S.-I.; Furuya, H.; Tsuchimoto, T. Tetrahedron 1996, 52, 1953.
- 10. Omichi, H.; Machida, H.; Miyakoshi, T.; Saito, S. Nippon Kagaku Kaishi 1977, 7, 1021.
- 11. Budzikiewicz, H.; and Grotjahn, L. Tetrahedron 1972, 28, 1881.
- 12. Kurokaawa, M.; Sato, F.; Masuda, Y.; Yoshida, T.; Ochi, Y.; Zushi, K.; Fujiwara, I.; Naruto, S.; Uno, H.; Matsumoto, J.-I. *Chem. Pharm. Bull.* **1991**, *39*, 2564.
- 13. Stach, K.; Springler, H. Monatsh. Chem. 1962, 93, 890.